Запис Детальніше

Інтеграція природничо-наукових дисциплін у світлі компетентнісної парадигми освіти

Журнал "Теорія та методика навчання фундаментальних дисциплін у вищій школі"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Інтеграція природничо-наукових дисциплін у світлі компетентнісної парадигми освіти
Интеграция естественнонаучных дисциплин в свете компетентностной парадигмы образования
The integration of natural sciences considering competency paradigm of education
 
Creator Краснобокий, Юрій Миколайович
Ткаченко, Ігор Анатолійович
 
Subject



 
Description Система освіти, яка ґрунтується на наукових засадах її організації, характеризується зміщенням акцентів від отримання готового наукового знання до оволодіння методами його отримання як основи розвитку загальнонаукових компетенцій.Уже достатньо чітко визначена спрямованість нової освітньої парадигми, осмислені її детермінуючі особливості, визначено предмет постнекласичної педагогіки та її основоположні аксіоми. Вироблені пріоритети всієї постнекласичної дидактики, аж до розроблення її категоріального апарату. Проте, на фоні такої колосальної роботи педагогічної думки так і не сформульовано достатньо чітко концептуальні основи постнекласичної дидактики, яка перебуває в стані активного формування як загалом, так і по відношенню до її природничо-наукової компоненти.На сучасному етапі модернізації освіти головним завданням стає формування у студентів здатності навчатися, самостійно здобувати знання і творчо мислити, приймати нестандартні рішення, відповідати за свої дії і прогнозувати їх наслідки; за період навчання у них мають бути сформовані такі навики, які їм будуть потрібні упродовж всього життя, у якій би галузі вони не працювали: самостійність суджень, уміння концентруватися на основних проблемах, постійно поповнювати власний запас знань.Зараз вимоги до рівня підготовки випускника пред’являються у формі компетенцій. Обов’язковими компонентами будь-якої компетенції є відповідні знання і уміння, а також особистісні якості випускника. Синтез цих компонентів, який виражається в здатності застосовувати їх у професійній діяльності, становлять сутність компетенції. Отже, інтегральним показником досягнення якісно нового результату, який відповідає вимогам до сучасного вчителя, виступає компетентність випускника університету. Оволодіння сукупністю універсальних (завдяки інтегральному підходові до викладання) і професійних компетенцій дозволить випускнику виконувати професійні обов’язки на високому рівні. Необхідно шляхом інтеграції навчальних дисциплін, використовуючи активні методи та інноваційні технології, які привчають до самостійного набуття знань і їх застосування, допомагати як формуванню практичних навиків пошуку, аналізу і узагальнення любої потрібної інформації, так і набуттю досвіду саморозвитку і самоосвіти, самоорганізації і самореалізації, сприяти становленню і розвиткові відповідних компетенцій, актуальних для майбутньої професійної діяльності учителя.Стосовно обговорюваного питання, то в результаті вивчення циклу природничих дисциплін випускник повинен знати фундаментальні закони природи, неорганічної і органічної матерії, біосфери, ноосфери, розвитку людини; уміти оцінювати проблеми взаємозв’язку індивіда, людського суспільства і природи; володіти навиками формування загальних уявлень про матеріальну першооснову Всесвіту. Звичайно, що забезпечити такі компетенції будь-яка окремо взята природнича наука не в змозі. Шлях до вирішення цієї проблеми лежить через їх інтеграцію, тобто через оволодіння масивом сучасних природничо-наукових знань як цілісною системою і набуття відповідних професійних компетенцій на основі фундаментальної освіти [2].Когнітивною основою розвитку загальнонаукових компетенцій є наукові знання з тих розділів дисциплін природничо-наукового циклу ВНЗ, які перетинаються між собою. Тобто, успішність їх розвитку визначається рівнем міждисциплінарної інтеграції вказаних розділів. Загальновідомо, що найбільший інтеграційний потенціал має загальний курс фізики, оскільки основні поняття, теорії і закони фізики широко представлені і використовуються у більшості інших загальнонаукових і вузькоприкладних дисциплін, що створює необхідну базу для розвитку комплексу загальнонаукових компетентностей.У той же час визначальною особливістю структури наукової діяльності на сучасному етапі є розмежування науки на відносно відособлені один від одного напрями, що відображається у відокремлених навчальних дисциплінах, які складають змістове наповнення навчальних планів різних спеціальностей у ВНЗ. До деякої міри це має позитивний аспект, оскільки дає можливість більш детально вивчити окремі «фрагменти» реальності. З іншого боку, при цьому випадають з поля зору зв’язки між цими фрагментами, оскільки в природі все між собою взаємопов’язане і взаємозумовлене. Негативний вплив відокремленості наук вже в даний час особливо відчувається, коли виникає потреба комплексних інтегрованих досліджень оточуючого середовища. Природа єдина. Єдиною мала б бути і наука, яка вивчає всі явища природи.Наука не лише вивчає розвиток природи, але й сама є процесом, фактором і результатом еволюції, тому й вона має перебувати в гармонії з еволюцією природи. Збагачення різноманітності науки повинно супроводжуватися інтеграцією і зростанням упорядкованості, що відповідає переходу науки на рівень цілісної інтегративної гармонічної системи, в якій залишаються в силі основні вимоги до наукового дослідження – універсальність досліду і об’єктивний характер тлумачень його результатів.У даний час загальноприйнято ділити науки на природничі, гуманітарні, математичні та прикладні. До природничих наук відносять: фізику, хімію, біологію, астрономію, геологію, фізичну географію, фізіологію людини, антропологію. Між ними чимало «перехідних» або «стичних» наук: астрофізика, фізична хімія, хімічна фізика, геофізика, геохімія, біофізика, біомеханіка, біохімія, біогеохімія та ін., а також перехідні від них до гуманітарних і прикладних наук. Предмет природничих наук складають окремі ступені розвитку природи або її структурні рівні.Взаємозв’язок між фізикою, хімією і астрономією, а особливо аспектний характер фізичних знань стосовно до хімії і астрономії дають можливість стверджувати, що роль генералізаційного фактору при формуванні змісту природничо-наукової освіти можлива лише за умови функціонування системи астрофізичних знань. Генералізація фізичних й астрономічних знань, а також підвищення ролі наукових теорій не лише обумовили фундаментальні відкриття на стику цих наук, але й стали важливим засобом подальшого розвитку природничого наукового знання в цілому [4]. Що стосується змісту, то його, внаслідок бурхливого розвитку астрофізики в останні декілька десятків років потрібно зробити більш астрофізичним. Астрофізика як розділ астрономії вже давно стала найбільш вагомою її частиною, і роль її все більше зростає. Вона взагалі знаходиться в авангарді сучасної фізики, буквально переповнена фізичними ідеями й має величезний позитивний зворотній зв’язок з сучасною фізикою, стимулюючи багато досліджень, як теоретичних, так і експериментальних. Зумовлено це, в першу чергу, невпинним розвитком сучасних астрофізичних теорій, переоснащенням науково-технічної дослідницької бази, значним успіхом світової космонавтики [3].Разом з тим, сучасна астрономія – надзвичайно динамічна наука; відкриття в ній відбуваються в різних її галузях – у зоряній і позагалактичній астрономії, продовжуються відкриття екзопланет тощо. Так, нещодавно відкрито новий коричневий карлик, який через присутність у його атмосфері аміаку і тому, що його температура істотно нижча, ніж температура коричневих карликів класів L і T, може стати прототипом нового класу (його вчені вже позначили Y). Важливим є й те, що такий коричневий карлик – фактично «сполучна ланка» між зорями і планетами, а його відкриття також вплине на вивчення екзопланет.Сучасні астрофізичні космічні дослідження дозволяють отримати унікальні дані про дуже віддалені космічні об’єкти, про події, що відбулися в період зародження зір і галактик. Міжнародна астрономічна спілка (МАС) запровадила зміни в номенклатурі Сонячної системи, ввівши новий клас об’єктів – «карликові планети». До цього класу зараховано Плутон (раніше – дев’ята планета Сонячної системи), Цереру (до цього – найбільший об’єкт з поясу астероїдів, що міститься між Марсом і Юпітером) та Еріду (до цього часу – об’єкт 2003 UB313 з поясу Койпера). Водночас МАС ухвалила рішення щодо формулювання поняття «планета». Тому, планета – небесне тіло, що обертається навколо Сонця, має близьку до сферичної форму і поблизу якого немає інших, таких самих за розмірами небесних тіл. Існування в планетах твердої та рідкої фаз речовини в широкому діапазоні температур і тисків зумовлює не тільки величезну різноманітність фізичних явищ та процесів, а й перебіг різнобічних хімічних процесів, таких, наприклад як, утворення природних хімічних сполук – мінералів. На жодних космічних тілах немає такого розмаїття хімічних перетворень, як на планетах. Проте на них можуть відбуватися не тільки фізичні та хімічні процеси, а й, як свідчить приклад Землі, й біологічні та соціальні. Тобто планети відіграють особливу роль в еволюції матерії у Всесвіті. Саме завдяки існуванню планет у Всесвіті відбувається перехід від фізичної форми руху матерії до хімічної, біологічної, соціальної, цивілізаційної. Планети – це база для розвитку вищих форм руху матерії. Слід зазначити, що це визначення стосується лише тіл Сонячної системи, на екзопланети (планет поблизу інших зір) воно поки що не поширюється. Було також визначено поняття «карликова планета». Окрім цього, вилучено з астрономічної термінології термін «мала планета». Таким чином, сьогодні в Сонячній системі є планети (та їх супутники), карликові планети (та їх супутники), малі тіла (астероїди, комети, метеороїди).Використання даних сучасних астрономічних, зокрема астрофізичних уявлень переконливо свідчать про те, що дійсно всі випадки взаємодій тіл у природі (як в мікросвіті, так й у макросвіті і мегасвіті) можуть бути зведені до чотирьох видів взаємодій: гравітаційної, електромагнітної, ядерної і слабкої. В іншому плані, ілюстрація застосувань фундаментальних фізичних теорій, законів і основоположних фізичних понять для пояснення особливостей будови матерії та взаємодій її форм на прикладі всіх рівнів організації матерії (від елементарних частинок до мегаутворень Всесвіту) є переконливим свідченням матеріальної єдності світу та його пізнаваності.Наукова картина світу, виконуючи роль систематизації всіх знань, одночасно виконує функцію формування наукового світогляду, є одним із його елементів [1]. У свою чергу, з науковою картиною світу завжди корелює і певний стиль мислення. Тому формування в учнів сучасної наукової картини світу і одночасно уявлень про її еволюцію є необхідною умовою формування в учнів сучасного стилю мислення. Цілком очевидно, що для формування уявлень про таку картину світу і вироблення у них відповідного стилю мислення необхідний й відповідний навчальний матеріал. В даний час, коли астрофізика стала провідною складовою частиною астрономії, незабезпеченість її опори на традиційний курс фізики є цілком очевидною. Так, у шкільному курсі фізики не вивчаються такі надзвичайно важливі для осмисленого засвоєння програмного астрономічного матеріалу поняття як: ефект Доплера, принцип дії телескопа, світність, закони теплового випромінювання тощо.В умовах інтенсифікації наукової діяльності посилюється увага до проблем інтеграції науки, особливо до взаємодії природничих, технічних, гуманітарних («гуманітаризація освіти») та соціально-економічних наук. Розкриття матеріальної єдності світу вже не є привілеями лише фізики і філософії, та й взагалі природничих наук; у цей процес активно включилися соціально-економічні і технічні науки. Матеріальна єдність світу в тих галузях, де людина перетворює природу, не може бути розкритою лише природничими науками, тому що взаємодіюче з нею суспільство теж являє собою матерію, вищого ступеня розвитку. Технічні науки, які відображають закони руху матеріальних засобів людської діяльності і які є тією ланкою, що у взаємодії поєднує людину і природу, теж свідчать про матеріальність засобів людської діяльності, з допомогою яких пізнається і перетворюється природа. Тепер можна стверджувати, що доведення матеріальної єдності світу стало справою не лише філософії і природознавства, але й всієї науки в цілому, воно перетворилося у завдання загальнонаукового характеру, що й вимагає посилення взаємозв’язку та інтеграції перерахованих вище наук.Звичайно, що найбільший внесок у цю справу робить природознавство, яке відповідно до характеру свого предмета має подвійну мету: а) розкриття механізмів явищ природи і пізнання їх законів; б) вияснення і обґрунтування можливості екологічно безпечного використання на практиці пізнаних законів природи.Інтеграція природничо-наукової освіти передбачає застосування впродовж всього навчання загальнонаукових принципів і методів, які є стержневими. Для змісту інтегративних природничо-наукових дисциплін найбільш важливими є принцип доповнюваності, принцип відповідності, принцип симетрії, метод моделювання та математичні методи.Вважаємо за доцільне звернути особливу увагу на метод моделювання, широке застосування якого найбільш характерне для природничих наук і є необхідною умовою їх інтеграції. Необхідність застосування методу моделювання в освітній галузі «природознавство» очевидна у зв’язку зі складністю і комплексністю цієї предметної галузі. Без використання цього методу неможлива інтеграція природничо-наукових знань. У процесі моделювання об’єктів із області природознавства, що мають різну природу, якісно нового характеру набувають інтеграційні зв'язки, які об’єднують різні галузі природничо-наукових знань шляхом спільних законів, понять, методів дослідження тощо. Цей метод дозволяє, з одного боку, зрозуміти структуру різних об’єктів; навчитися прогнозувати наслідки впливу на об’єкти дослідження і керувати ними; встановлювати причинно-наслідкові зв’язки між явищами; з іншого боку – оптимізувати процес навчання, розвивати загальнонаукові компетенції.Фундаментальна підготовка студентів з природничо-наукових спеціальностей неможлива без послідовного і систематичного формування природничо-наукового світогляду у майбутніх фахівців.Науковий світогляд – це погляд на Всесвіт, на природу і суспільство, на все, що нас оточує і що відбувається у нас самих; він проникнутий методом наукового пізнання, який відображає речі і процеси такими, якими вони існують об’єктивно; він ґрунтується виключно на досягнутому рівні знань всіма науками. Така узагальнена система знань людини про природні явища і її відношення до основних принципів буття природи складає природничо-науковий аспект світогляду. Отже, світогляд – утворення інтегральне і ефективність його формування в основному залежить від ступеня інтеграції всіх навчальних дисциплін. Адже до складу світогляду входять і відіграють у ньому важливу роль такі узагальнені знання, як повсякденні (життєво-практичні), так і професійні та наукові.Вищим рівнем асоціативних зв’язків є міждисциплінарні зв’язки, які повинні мати місце не лише у змісті окремих навчальних курсів. Тому, сучасна тенденція інтеграції природничих наук і створення спільних теорій природознавства зобов’язує викладацький корпус активніше упроваджувати міждисциплінарні зв’язки природничо-наукових дисциплін у навчальний процес ВНЗ, що позитивно відобразиться на ефективності його організації та підвищенні якості навчальних досягнень студентів.Підсумовуючи вище викладене, можна зробити наступні висновки:Однією з особливостей компетентісного підходу, що відрізняє його від знанієво-центрованого, є зміна функцій підготовки вчителів з окремих дисциплін, які втрачають свою традиційну самодостатність і стають елементами, що інтегруються у систему цілісної психолого-педагогічної готовності випускника до роботи в умовах сучасного загальноосвітнього навчального закладу.Інтеграційні процеси, так характерні для сучасного етапу розвитку природознавства, обов’язково мають знаходити своє відображення в природничо-науковій освіті на рівні як загальноосвітньої, так і вищої школи. Майбутнім педагогам необхідно усвідомлювати взаємозв’язок і взаємозалежність наук, щоб вони могли підготувати своїх учнів до роботи в сучасних умовах інтеграції наук.Учителям біології, хімії, географії необхідно володіти методами дослідження об’єктів природи, переважна більшість яких базується на законах фізики і передбачає уміння працювати з фізичними приладами. Крім того, саме фізика створює основу для вивчення різноманітних явищ і закономірностей, які складають предмет інших природничих наук.Інтеграція природничо-наукових дисциплін дозволить розкрити у процесі навчання фундаментальну єдність «природа – людина – суспільство», значно посилить інтерес студентів до вивчення цього циклу дисциплін, дасть можливість інтенсифікувати навчальний процес і забезпечити високий рівень якості його результату.
В результате изучения цикла естественных дисциплин выпускник должен знать фундаментальные законы природы, неорганической и органической материи, биосферы, ноосферы, развития человека; уметь оценивать проблемы взаимосвязи индивида, человеческого общества и природы; обладать навыками формирования общих представлений о материальной первооснове Вселенной. Путь к решению этой проблемы лежит через интеграцию естественных дисциплин.
As a result of studying the the cycle of natural sciences graduate must know the fundamental laws of nature, inorganic and organic matter, biosphere and noosphere, human development, he must be able to assess the problem of the relationship of the individual, society and human nature, he must possess the skills of forming general ideas about the initial material universe. The way to solve this problem is the integration of natural sciences.
 
Publisher State institution of higher education «Kryvyi Rih National University»
 
Contributor


 
Date 2013-11-23
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion



 
Format application/pdf
 
Identifier http://ccjournals.eu/ojs/index.php/fund/article/view/195
 
Source Theory and methods of learning fundamental disciplines in high school; Vol 8 (2013); 83-89
Теория и методика обучения фундаментальным дисциплинам в высшей школе; Vol 8 (2013); 83-89
Теорія та методика навчання фундаментальних дисциплін у вищій школі; Vol 8 (2013); 83-89
2309-1487
 
Language ukr
 
Relation http://ccjournals.eu/ojs/index.php/fund/article/view/195/185
 
Rights Copyright (c) 2014 Theory and methods of learning fundamental disciplines in high school