Запис Детальніше

Integrity assessment of cracked components using probabilistic methods

DSpace at Ternopil State Ivan Puluj Technical University

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Integrity assessment of cracked components using probabilistic methods
 
Creator Varfolomeyev, I.
Yasniy, O.
 
Contributor Fraunhofer IWM, Freiburg, Germany
National University of Lviv, Ukraine
 
Description In this study probabilistic methods of the fracture mechanics are applied to integrity
assessment of cracked components subjected to static and cyclic loading. Various key issues
related to a probabilistic analysis are discussed and accounted for in the calculations. An
example illustrating the application of computational procedures to evaluate the integrity of a
component with postulated cracks is presented. Finally, some available experimental results
on fatigue crack growth are re-evaluated based on the use of statistical methods.
 
Date 2016-06-05T06:59:16Z
2016-06-05T06:59:16Z
2006-09-25
2006-09-25
 
Type Article
 
Identifier Varfolomeyev I. Integrity assessment of cracked components using probabilistic methods / I. Varfolomeyev, O. Yasniy // Механічна втома металів. Праці 13-го міжнародного колоквіуму (МВМ-2006), 25-28 вересня 2006 року — Т. : ТДТУ, 2006 — С. 97-104. — (Пленарні доповіді).
966-305-027-6
http://elartu.tntu.edu.ua/handle/123456789/16771
Varfolomeyev I., Yasniy O. (2006) Integrity assessment of cracked components using probabilistic methods. Mechanical Fatigue of Metals: Proceeding of the 13-th International Colloquium (MFM) (Tern., 25-28 September 2006), pp. 97-104 [in English].
 
Language en
 
Relation ⅩⅢ міжнародний колоквіум „Механічна втома металів“
ⅩⅢ Internation Colloquium "Mechanical fatigue of metals"
1. Bloom, J.M., Ekvall, J.C. (Eds.), Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural Design and Maintenance, ASTM STP 798, American Society for Testing and Materials (1983).
2. Provan, J.W. (Ed.), Probabilistic Fracture Mechanics and Reliability, Martinus Nijhoff Publ. (1987).
3. Cioclov, D., Kröning, M., Probabilistic fracture mechanics approach to pressure vessel reliability evaluation, in Probabilistic and Environmental Aspects of Fracture and Fatigue, ASME PVP Vol. 386, pp. 115-125 (1999).
4. Rahman, S., Kim, J.S., Probabilistic fracture mechanics for nonlinear structures, Int. J. Pressure Vessels and Piping 78, 261-269 (2001).
5. Dillström, P., ProSINTAP – A probabilistic program implementing the SINTAP assessment procedure, Eng. Fracture Mechanics 67, 647-668 (2000).
6. Brickstad, B., Dillström, P., Schimpfke, T., Cueto-Felgueroso, C., Chapman, O.J.V., Bell, C.D., Project NURBIM (nuclear RI-ISI methodology for passive components), benchmarking of structural reliability models and associated software, in Flaw Evaluation, Service Experience, and Materials for Hydrogen Service, ASME PVP Vol. 475, pp. 109-119 (2004).
7. SINTAP: Structural Integrity Assessment Procedures for European Industry, Report BE 95-1426 (1999).
8. FITNET: Fitness-for-Service Procedure, Prepared by European Fitness-for-Service Thematic Network, M. Kocak et al., Eds. (2006).
9. Berger, C., Blauel, J.G., Hodulak, L., Pyttel, B., Varfolomeyev, I., Fracture Mechanics Proof of Strength of Engineering Components, FKM-Guideline, 3rd extended edition, VDMA Publ. GmbH (2006).
10. Varfolomeyev, I.V., Vainshtok, V.A., Krasowsky, A.Ya., Prediction of part-through crack growth under cyclic loading, Eng. Fracture Mechanics 40, 1007-1022 (1991).
11. Wallin, K., The scatter in KIc results, Eng. Fracture Mechanics 19, 1085-1093 (1984).
12. Socie, D., Modelling expected service usage from short-term loading measurements, Int. J. Materials & Product Technology 16, 295-303 (2001).
13. Der Kiureghian, A., De Stefano, M., Efficient algorithm for second-order reliability analysis, J. Engineering Mechanics 117, 2904-2923 (1991).
14. Engelund S., Rackwitz R., A benchmark study on importance sampling techniques in structural reliability, Structural Safety 12, 255-276 (1993).
15. Bernasovski P., Lombardini J., Cracking of SAW welds in gas pipelines, in Proc. Pipeline Conference, Oostende, November 1990, pp. 13.19-13.24 (1990).
1. Bloom, J.M., Ekvall, J.C. (Eds.), Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural Design and Maintenance, ASTM STP 798, American Society for Testing and Materials (1983).
2. Provan, J.W. (Ed.), Probabilistic Fracture Mechanics and Reliability, Martinus Nijhoff Publ. (1987).
3. Cioclov, D., Kröning, M., Probabilistic fracture mechanics approach to pressure vessel reliability evaluation, in Probabilistic and Environmental Aspects of Fracture and Fatigue, ASME PVP Vol. 386, pp. 115-125 (1999).
4. Rahman, S., Kim, J.S., Probabilistic fracture mechanics for nonlinear structures, Int. J. Pressure Vessels and Piping 78, 261-269 (2001).
5. Dillström, P., ProSINTAP – A probabilistic program implementing the SINTAP assessment procedure, Eng. Fracture Mechanics 67, 647-668 (2000).
6. Brickstad, B., Dillström, P., Schimpfke, T., Cueto-Felgueroso, C., Chapman, O.J.V., Bell, C.D., Project NURBIM (nuclear RI-ISI methodology for passive components), benchmarking of structural reliability models and associated software, in Flaw Evaluation, Service Experience, and Materials for Hydrogen Service, ASME PVP Vol. 475, pp. 109-119 (2004).
7. SINTAP: Structural Integrity Assessment Procedures for European Industry, Report BE 95-1426 (1999).
8. FITNET: Fitness-for-Service Procedure, Prepared by European Fitness-for-Service Thematic Network, M. Kocak et al., Eds. (2006).
9. Berger, C., Blauel, J.G., Hodulak, L., Pyttel, B., Varfolomeyev, I., Fracture Mechanics Proof of Strength of Engineering Components, FKM-Guideline, 3rd extended edition, VDMA Publ. GmbH (2006).
10. Varfolomeyev, I.V., Vainshtok, V.A., Krasowsky, A.Ya., Prediction of part-through crack growth under cyclic loading, Eng. Fracture Mechanics 40, 1007-1022 (1991).
11. Wallin, K., The scatter in KIc results, Eng. Fracture Mechanics 19, 1085-1093 (1984).
12. Socie, D., Modelling expected service usage from short-term loading measurements, Int. J. Materials & Product Technology 16, 295-303 (2001).
13. Der Kiureghian, A., De Stefano, M., Efficient algorithm for second-order reliability analysis, J. Engineering Mechanics 117, 2904-2923 (1991).
14. Engelund S., Rackwitz R., A benchmark study on importance sampling techniques in structural reliability, Structural Safety 12, 255-276 (1993).
15. Bernasovski P., Lombardini J., Cracking of SAW welds in gas pipelines, in Proc. Pipeline Conference, Oostende, November 1990, pp. 13.19-13.24 (1990).
 
Rights © Тернопільський державний технічний університет імені Івана Пулюя
 
Format 97-104
8
 
Coverage 25-28 вересня 2006 року
25-28 September 2006
Україна, Тернопіль
Ukraine, Ternopil
 
Publisher ТДТУ
TDTU