Centralizers of Jacobian derivations

Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobi...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Lugansk National Taras Shevchenko University
Дата:2023
Автори: Efimov, D. I., Petravchuk, A. P., Sydorov, M. S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

Організація

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2186
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-21862023-12-11T16:21:07Z Centralizers of Jacobian derivations Efimov, D. I. Petravchuk, A. P. Sydorov, M. S. Lie algebra, Jacobian derivation, differential equation, centralizer, integrable system Primary 17B66; Secondary 17B80 Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobian derivation if there exists \(f \in \mathbb K[x, y]\) such that \(D(h) = \det J(f, h)\) for any \(h \in \mathbb K[x, y]\) (here \(J(f, h)\) is the Jacobian matrix for \(f\) and \(h\)). Such a derivation is denoted by \(D_f\) . The kernel of \(D_f\) in \(\mathbb K[x, y]\) is a subalgebra \(\mathbb K[p]\) where \(p=p(x, y)\) is a polynomial of smallest degree such that \(f(x, y) = \varphi (p(x, y))\) for some \(\varphi (t) \in \mathbb K[t]\). Let \(C = C_{W_2(\mathbb K)} (D_f)\) be the centralizer of \(D_f\) in \(W_2(\mathbb K)\). We prove that \(C\) is the free \(\mathbb K[p]\)-module of rank \(1\) or \(2\) over \(\mathbb K[p]\) and point out a criterion of being a module of rank \(2\). These results are used to obtain a class of integrable autonomous systems of differential equations. Lugansk National Taras Shevchenko University 2023-12-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186 10.12958/adm2186 Algebra and Discrete Mathematics; Vol 36, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2186/1138 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Lie algebra
Jacobian derivation
differential equation
centralizer
integrable system
Primary 17B66
Secondary 17B80
spellingShingle Lie algebra
Jacobian derivation
differential equation
centralizer
integrable system
Primary 17B66
Secondary 17B80
Efimov, D. I.
Petravchuk, A. P.
Sydorov, M. S.
Centralizers of Jacobian derivations
topic_facet Lie algebra
Jacobian derivation
differential equation
centralizer
integrable system
Primary 17B66
Secondary 17B80
format Article
author Efimov, D. I.
Petravchuk, A. P.
Sydorov, M. S.
author_facet Efimov, D. I.
Petravchuk, A. P.
Sydorov, M. S.
author_sort Efimov, D. I.
title Centralizers of Jacobian derivations
title_short Centralizers of Jacobian derivations
title_full Centralizers of Jacobian derivations
title_fullStr Centralizers of Jacobian derivations
title_full_unstemmed Centralizers of Jacobian derivations
title_sort centralizers of jacobian derivations
description Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobian derivation if there exists \(f \in \mathbb K[x, y]\) such that \(D(h) = \det J(f, h)\) for any \(h \in \mathbb K[x, y]\) (here \(J(f, h)\) is the Jacobian matrix for \(f\) and \(h\)). Such a derivation is denoted by \(D_f\) . The kernel of \(D_f\) in \(\mathbb K[x, y]\) is a subalgebra \(\mathbb K[p]\) where \(p=p(x, y)\) is a polynomial of smallest degree such that \(f(x, y) = \varphi (p(x, y))\) for some \(\varphi (t) \in \mathbb K[t]\). Let \(C = C_{W_2(\mathbb K)} (D_f)\) be the centralizer of \(D_f\) in \(W_2(\mathbb K)\). We prove that \(C\) is the free \(\mathbb K[p]\)-module of rank \(1\) or \(2\) over \(\mathbb K[p]\) and point out a criterion of being a module of rank \(2\). These results are used to obtain a class of integrable autonomous systems of differential equations.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186
work_keys_str_mv AT efimovdi centralizersofjacobianderivations
AT petravchukap centralizersofjacobianderivations
AT sydorovms centralizersofjacobianderivations
first_indexed 2024-04-12T06:13:58Z
last_indexed 2024-04-12T06:13:58Z
_version_ 1804810509669629952