Крайова задача для лiнiйного гiперболiчного рiвняння зi змiнними коефiцiєнтами
Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Крайова задача для лiнiйного гiперболiчного рiвняння зi змiнними коефiцiєнтами
The bondary-value problem for linear hyperbolic equation with variable coefficients |
|
Creator |
Репетило, С. М.
|
|
Subject |
крайова задача
гiперболiчнi рiвняння метод Фур’є малi знаменники метричний пiдхiд мiра Лебега boundary-value problem hyperbolic equation Fourier method small denominators metric approach Lebesque measure |
|
Description |
Дослiджено крайову задачу (з даними на всiй границi областi) для лiнiйного неоднорiдного гiперболiчного рiвняння другого порядку зi змiнними за просторовими координатами коефiцiєнтами. Встановлено умови коректностi задачi та побудовано розв’язок у виглядi ряду за системою ортогональних функцiй. Для оцiнок знизу малих знаменникiв, що виникли при побудовi розв’язку задачi, використано метричний пiдхiд. The problem with data on the whole boundary of domain for linear non-homogeneous hyperbolic equation of the second order with variable in the spatial coordinates coefficients is investigated. The conditions of correctness of the problem are established and the solution in the form of series according to the system of orthogonal functions is constructed. For estimation of small denominators from below that appeared during the construction of the solution of the problem the metric approach is used.
|
|
Date |
2010-11-09T12:45:28Z
2010-11-09T12:45:28Z 2009 |
|
Type |
Article
|
|
Identifier |
Репетило C. М. Крайова задача для лiнiйного гiперболiчного рiвняння зi змiнними коефiцiєнтами / С. М. Репетило // Вісник Національного університету «Львівська політехніка». – 2009. – № 660 : Фізико-математичні науки. – С. 28–33. – Бібліографія: 23 назви.
http://ena.lp.edu.ua:8080/handle/ntb/6342 |
|
Language |
ua
|
|
Format |
application/pdf
|
|
Publisher |
Видавництво Національного університету "Львівська політехніка"
|
|