Запис Детальніше

OPTIMIZATION OF INFORMATION PREPROCESSING IN CLUSTERING SYSTEMS OF HIGH DIMENSION DATA

Науковий журнал «Радіоелектроніка, інформатика, управління»

Переглянути архів Інформація
 
 
Поле Співвідношення
 
##plugins.schemas.marc.fields.042.name## dc
 
##plugins.schemas.marc.fields.245.name## OPTIMIZATION OF INFORMATION PREPROCESSING IN CLUSTERING SYSTEMS OF HIGH DIMENSION DATA
 
##plugins.schemas.marc.fields.720.name## Babichev, S. A.; Kherson National Technical University, Kherson, Ukraine
 
##plugins.schemas.marc.fields.653.name## сlustering, the feature space dimension, normalization, entropy
 
##plugins.schemas.marc.fields.520.name## <p>The methodic of choice of optimal normalization method for object cluster structure of creation, with high dimension of feature space, is shown. The Shannon entropy criterion and entropy relative change were used as main criterions of estimating the data preprocessing quality during the data transformation. Decreasing of feature space dimension of tested objects was realized by component analysis. Model of system clustering with the use of fuzzy C-means algorithm was constructed, which the help of whith the estimate of clustering quality was established by the use of different data preprocessing methods. It’s shown that the best normalization method for tested data is decimal-scaling method, by which the entropy of processed signal gets minimal significance, and relative change of entropy doesn’t exceed permissible norms during the process of data transformation by component analysis.</p>
 
##plugins.schemas.marc.fields.260.name## Zaporizhzhya National Technical University
2015-01-27 10:16:30
 
##plugins.schemas.marc.fields.856.name## application/pdf
http://ric.zntu.edu.ua/article/view/37102
 
##plugins.schemas.marc.fields.786.name## Radio Electronics, Computer Science, Control; No 2 (2014): Radio Electronics, Computer Science, Control
 
##plugins.schemas.marc.fields.546.name## ru
 
##plugins.schemas.marc.fields.540.name## Copyright (c) 2015 S. A. Babichev