Запис Детальніше

Data assimilation using kalman filter techniques

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Data assimilation using kalman filter techniques
 
Creator Dimitriu, G.
Cuciureanu, R.
 
Subject Прикладне програмне забезпечення
 
Description Kalman filtering represents a powerful framework for solving data assimilation problems. Of interest here are the low-rank filters which
are computationally efficient to solve large scale data assimilation problems. The low-rank filters are either based on factorization of the
covariance matrix (RRSQRT filter), or approximation of statistics from a finite ensemble (ENKF). A new direction in filter
implementation is the use of two filters next to each other of the same form or hybrid (POENKF). The factorization approach is based on
the linear Kalman filter which can be extended towards nonlinear models. In this paper, the background, implementation and performance
of some common used low-rank filters is discussed. Numerical results are presented.
 
Date 2008-08-26T13:22:57Z
2008-08-26T13:22:57Z
2006
 
Type Article
 
Identifier Data assimilation using kalman filter techniques / G. Dimitriu, R. Cuciureanu // Проблеми програмування. — 2006. — N 2-3. — С. 688-693. — Бібліогр.: 5 назв. — англ.
1727-4907
http://dspace.nbuv.gov.ua/handle/123456789/1581
004.75
 
Language en
 
Publisher Інститут програмних систем НАН України