Запис Детальніше

PRV property and the asymptotic behaviour of solutions of stochastic differential equations

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title PRV property and the asymptotic behaviour of solutions of stochastic differential equations
 
Creator Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
 
Description We consider the a.s. asymptotic behaviour of a solution of the stochastic differential
equation (SDE) dX(t) = g(X(t))dt + σ(X(t))dW(t), with X(0) ≡ b > 0, where g(.)
and σ(.) are positive continuous functions and W(.) is the standard Wiener process.
By applying the theory of PRV and PMPV functions, we find the conditions on g(.)
and σ(.), under which X(.) resp. f(X(.)) may be approximated a.s. on {X(t)→∞}
by μ(.) resp. f(μ(.)), where μ( ) is a solution of the deterministic differential equation
dμ(t) = g(μ(t))dt with μ(0) = b, and f(.) is a strictly increasing function. Moreover,
we consider the asymptotic behaviour of generalized renewal processes connected
with this SDE.
 
Date 2009-11-09T15:30:54Z
2009-11-09T15:30:54Z
2005
 
Type Article
 
Identifier PRV property and the asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 42–57. — Бібліогр.: 17 назв.— англ.
0321-3900
http://dspace.nbuv.gov.ua/handle/123456789/4424
519.21
 
Language en
 
Publisher Інститут математики НАН України