Запис Детальніше

Regular variation in the branching random walk

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Regular variation in the branching random walk
 
Creator Iksanov, A.
Polotskiy, S.
 
Description initial ancestor located at the origin of the real line. For n = 0, 1, . . . , let Wn be the moment generating function of Mn normalized by its mean. Denote by AWn any of
the following random variables: maximal function, square function, L1 and a.s. limit
W, supn≥0 |W − Wn|, supn≥0 |Wn+1 − Wn|. Under mild moment restrictions and
the assumption that {W1 > x} regularly varies at ∞, it is proved that P{AWn > x}
regularly varies at ∞ with the same exponent. All the proofs given are non-analytic in the sense that these do not use Laplace–Stieltjes transforms. The result on the tail behaviour of W is established in two distinct ways.
 
Date 2009-11-10T14:49:23Z
2009-11-10T14:49:23Z
2006
 
Type Article
 
Identifier Regular variation in the branching random walk / A. Iksanov, S. Polotskiy // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 38–54. — Бібліогр.: 25 назв.— англ.
0321-3900
http://dspace.nbuv.gov.ua/handle/123456789/4440
519.21
 
Language en
 
Publisher Інститут математики НАН України