Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
|
|
Creator |
Torbin, G.
|
|
Description |
The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution function of a random variable with independent Q-digits to be a transformation preserving the Hausdorf dimension (DP-transformation) are studied in details. It is shown that for a large class of probability measures the distribution function is a DP-transformation if and only if the corresponding probability measure is of full Hausdorf dimension.
|
|
Date |
2009-11-19T10:27:51Z
2009-11-19T10:27:51Z 2007 |
|
Type |
Article
|
|
Identifier |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ.
0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4497 |
|
Language |
en
|
|
Publisher |
Інститут математики НАН України
|
|