Запис Детальніше

Prediction problem for random fields on groups

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Prediction problem for random fields on groups
 
Creator Moklyachuk, M.
 
Description The problem considered is the problem of optimal linear estimation of the functional Aξ = ∑↑∞↓j=0 ∫↓G a(g, j)ξ(g, j)dg which depends on the unknown values of a homogeneous random field ξ(g, j) on the group G × Z from observations of the field ξ(g, j) + η(g, j) for (g, j) belongs G×{−1,−2, . . .}, where η(g, j) is an uncorrelated with ξ(g, j) homogeneous random field ξ(g, j) on the group G×Z. Formulas are proposed for calculation the mean square error and spectral characteristics of the optimal linear estimate in the case where spectral densities of the fields are known. The least favorable spectral densities and the minimax spectral characteristics of the optimal estimate of the functional are found for some classes of spectral densities.
 
Date 2009-11-24T15:31:52Z
2009-11-24T15:31:52Z
2007
 
Type Article
 
Identifier Prediction problem for random fields on groups / M. Moklyachuk // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С. 148–162. — Бібліогр.: 20 назв.— англ.
0321-3900
http://dspace.nbuv.gov.ua/handle/123456789/4518
 
Language en
 
Publisher Інститут математики НАН України