A new test for unimodality
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
A new test for unimodality
|
|
Creator |
Andrushkiw, R.I.
Klyushin, D.D. Petunin, Y.I. |
|
Description |
A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of this paper is to construct nonparametric tests for the unimodality of d.f. based on a sample obtained from the general population of values of the random variable by simple sampling. The tests proposed are significance tests such that the unimodality of d.f. can be guaranteed with some probability (confidence level).
|
|
Date |
2009-11-25T10:59:23Z
2009-11-25T10:59:23Z 2008 |
|
Type |
Article
|
|
Identifier |
A new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ.
0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4530 519.21 |
|
Language |
en
|
|
Publisher |
Інститут математики НАН України
|
|