Запис Детальніше

On the φ-asymptotic behaviour of solutions of stochastic differential equations

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On the φ-asymptotic behaviour of solutions of stochastic differential equations
 
Creator Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
Tymoshenko, O.A.
 
Description In this paper we study the a.s. asymptotic behaviour of the solution of the stochastic dfferential equation dX(t) = g(X(t))dt +σ(X(t))dW(t), X(0) = b > 0, where g and σ are positive continuous functions and W is a Wiener process. Making use of the theory of pseudo-regularly varying (PRV) functions, we find conditions on g, σ and φ, under which φ(X(•)) can be approximated a.s. by φ(μ(•), where μ is the solution of the ordinary differential equation dμ(t) = g(μ(t))dt, μ(0) = b. As an application of these results we discuss the problem of φ-asymptotic equivalence for solutions of stochastic differential equations.
 
Date 2009-11-25T11:00:57Z
2009-11-25T11:00:57Z
2008
 
Type Article
 
Identifier On the φ-asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach, O.A. Tymoshenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 11–29. — Бібліогр.: 28 назв.— англ.
0321-3900
http://dspace.nbuv.gov.ua/handle/123456789/4532
519.21
 
Language en
 
Publisher Інститут математики НАН України