Запис Детальніше

A limit theorem for symmetric Markovian random evolution in R^m

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A limit theorem for symmetric Markovian random evolution in R^m
 
Creator Kolesnik, A.D.
 
Description We consider the symmetric Markovian random evolution X(t) performed by a particle that moves with constant finite speed c in the Euclidean space R^m, m >= 2. Its motion is subject to the control of a homogeneous Poisson process of rate λ > 0. We show that, under the Kac condition c → ∞, λ →∞, (c^2/λ) → ρ, ρ > 0, the transition density of X(t) converges to the transition density of the homogeneous Wiener process with zero drift and the diffusion coefficient σ^2 = 2ρ/m.
 
Date 2009-11-25T11:04:15Z
2009-11-25T11:04:15Z
2008
 
Type Article
 
Identifier A limit theorem for symmetric Markovian random evolution in R^m / A.D. Kolesnik // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 69–75. — Бібліогр.: 15 назв.— англ.
0321-3900
http://dspace.nbuv.gov.ua/handle/123456789/4537
519.21
 
Language en
 
Publisher Інститут математики НАН України