Kahler Geometry and Burgers' Vortices
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Kahler Geometry and Burgers' Vortices
|
|
Creator |
Roulstone, I.
Banos, B. Gibbon, J.D. Roubtsov, V.N. |
|
Subject |
Геометрія, топологія та їх застосування
Праці міжнародної конференції "Геометрія в Одесі - 2008" |
|
Description |
We study the Navier-Stokes and Euler equations of incompressible hydrodynamics. Taking the divergence of the momentum equation leads, as usual, to a Poisson equation for the pressure: in this paper we study this equation in two spatial dimensions using Monge-Ampere structures. In two dimensional flows where the Laplacian of the pressure is positive, a Kahler geometry is described on the phase space of the fluid; in regions where the Laplacian of the pressure is negative, a product structure is described. These structures can be related to the ellipticity and hyperbolicity (respectively) of a Monge-Ampere equation. We then show how this structure can be extended to a class of canonical vortex structures in three dimensions.
|
|
Date |
2010-02-23T14:32:25Z
2010-02-23T14:32:25Z 2009 |
|
Type |
Article
|
|
Identifier |
Kahler Geometry and Burgers' Vortices / I. Roulstone, B. Banos, J.D. Gibbon, V.N. Roubtsov // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 303-321. — Бібліогр.: 30 назв. — англ.
1815-2910 http://dspace.nbuv.gov.ua/handle/123456789/6310 |
|
Language |
en
|
|
Publisher |
Інститут математики НАН України
|
|