Запис Детальніше

Reparametrizations of vector fields and their shift maps

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Reparametrizations of vector fields and their shift maps
 
Creator Maksymenko, S.
 
Subject Геометрія, топологія та їх застосування
 
Description LetM be a smooth manifold, F be a smooth vector field on M, and (Ft) be the local flow of F. Denote by Sh(F) the subset of C^∞(M,M) consisting of maps h : M → M of the following form:
h(x) = Fα(x)(x), where _ runs over all smooth functions M → R which can be substituted into F instead of t. This space often contains the identity component of the group of diffeomorphisms preserving orbits of F. In this note it is shown that Sh(F) is not changed under reparametrizations of F, that is for any smooth strictly positive function μ : M → (0,+∞) we have that Sh(F) = Sh(μF). As an application it is proved that F can be reparametrized to induce a circle action on M if and only if there exists a smooth function μ : M → (0,+∞) such that F(x, μ(x)) ≡ x.
 
Date 2010-02-23T14:50:10Z
2010-02-23T14:50:10Z
2009
 
Type Article
 
Identifier Reparametrizations of vector fields and their shift maps / S. Maksymenko // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 489-498. — Бібліогр.: 8 назв. — англ.
1815-2910
http://dspace.nbuv.gov.ua/handle/123456789/6328
 
Language en
 
Publisher Інститут математики НАН України