Асимптотичні властивості розв'язків задачі Коші для виродженої сингулярно збуреної системи диференціальних рівнянь у випадку кратного спектра головного оператора
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Асимптотичні властивості розв'язків задачі Коші для виродженої сингулярно збуреної системи диференціальних рівнянь у випадку кратного спектра головного оператора
|
|
Creator |
Кочерга, О.І.
|
|
Description |
Доказан асимптотический характер решения задачи Коши для сингулярно возмущенной линейной системы дифференциальных уравнений с вырожденной матрицей при производных в случае, когда предельный пучок матриц регулярен и имеет кратные "конечный" и "бесконечный" элементарные делители. Установлены условия, при выполнении которых построенные формальные решения являются асимптотическими разложениями соответствующих точных решений.
The asymptotic character of a Cauchy problem for a singularly perturbed linear system of differential equations with a degenerate matrix at the derivatives in the case where the limit matrix bundle is regular and has multiple „finite” and „infinite” elementary divisors is proved. Conditions under which the constructed formal solutions are asymptotic expansions of the corresponding exact solutions have been found. |
|
Date |
2010-03-26T10:57:03Z
2010-03-26T10:57:03Z 2007 |
|
Type |
Article
|
|
Identifier |
Асимптотичні властивості розв'язків задачі Коші для виродженої сингулярно збуреної системи диференціальних рівнянь у випадку кратного спектра головного оператора / О.І. Кочерга // Нелінійні коливання. — 2007. — Т. 10, № 2. — С. 247-257. — Бібліогр.: 7 назв. — укp.
1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/7258 517.928 |
|
Language |
uk
|
|
Publisher |
Інститут математики НАН України
|
|