Regularity of infinite dimensional heat dynamics of unbounded lattice spins with non-constant diffusion coefficients
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Regularity of infinite dimensional heat dynamics of unbounded lattice spins with non-constant diffusion coefficients
|
|
Creator |
Antoniouk, A.Val.
Antoniouk, A.Vict. |
|
Description |
Below we demonstrate how the C^∞-regular properties of heat dynamics with non-unit nonlinear diffusion coefficient can be studied. We consider an infinite dimensional model, describing evolution of unbounded lattice spins R^Z^d. As a main step we provide a construction of corresponding variational processes in ℓp(c) spaces with growing weights ck ~ e^a|k|, k belongs Z^d. Developing the approach of nonlinear estimates on variations, we find sufficient conditions on the nonlinear coefficients of differential equation that lead to C^∞-regularity of solutions with respect to the initial data and C^∞-regularity of corresponding heat semigroup. |
|
Date |
2010-07-23T14:28:58Z
2010-07-23T14:28:58Z 2007 |
|
Type |
Article
|
|
Identifier |
Regularity of infinite dimensional heat dynamics of unbounded lattice spins with non-constant diffusion coefficients / A.Val. Antoniouk, A.Vict. Antoniouk // Нелинейные граничные задачи. — 2007. — Т. 17. — С. 101-129. — Бібліогр.: 11 назв. — англ.
0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/10116 |
|
Language |
en
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|