Асимптотические свойства траекторий нелинейной системы в случае резонанса четвертого порядка
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Асимптотические свойства траекторий нелинейной системы в случае резонанса четвертого порядка
|
|
Creator |
Грушковская, В.В.
Зуев, А.Л. |
|
Description |
Изучено поведение решений нелинейной системы при t → +∞ в критическом случае при условии, что асимптотическая устойчивость обеспечивается членами не выше третьего порядка. Предпологается, что система имеет частоты, удовлетворяющие резонансному соотношению типа 1:1:2 либо 1:1:1:1, при этом другие резонансы вплоть до четвертого порядка отсутствуют. В случае существования знакоопределенного первого интеграла резонансной подсистемы предложены достаточные условия асимптотической устойчивости и построена функция Ляпунова. Основным результатом является степенная оценка нормы решений исходной системы с начальными условиями из некоторой окрестности нуля. В качестве иллюстрации рассмотрен пример механической системы с четырьмя степенями свободы.
У статтi дослiджується поводження розв’язкiв нелiнiйної системи при t → +∞ критичному випадку, якщо асимптотична стiйкiсть забезпечується членами не вище третього порядку. Припускається, що система має частоти, якi задовольняють резонансне спiввiдношення типу 1 : 1 : 2 або 1 : 1 : 1 : 1, при цьому iншi резонанси до четвертого порядку включно вiдсутнi. У випадку iснування знаковизначеного першого iнтеграла запропоновано достатнi умови асимптотичної стiйкостi i побудовано функцiю Ляпунова. Основним результатом статтi є степенева оцiнка норми розв’язкiв системи з початковими умовами iз деякого околу нуля. Як iлюстрацiю розглянуто приклад механiчної системи з чотирма степенями вiльностi. This paper is devoted to the study of the behavior of solutions of a nonlinear system as t → +∞ in a critical case, under the assumption that the stability is ensured by third order forms. It is supposed that the system has frequencies satisfying the resonance relation of form 1 : 1 : 2 or 1 : 1 : 1 : 1, and there are no other resonances up to the fourth order. In a case when the resonance subsystem has a sign-definite first integral, sufficient conditions for the asymptotic stability are proposed, and a Lyapunov function is obtained. The main result of the paper is a power estimate for the solutions with initial conditions from a neighborhood of the origin. As an illustration, we consider an example of a mechanical system with four degrees of freedom. |
|
Date |
2014-12-27T13:51:02Z
2014-12-27T13:51:02Z 2013 |
|
Type |
Article
|
|
Identifier |
Асимптотические свойства траекторий нелинейной системы в случае резонанса четвертого порядка / В.В. Грушковская, А.Л. Зуев // Механика твердого тела: Межвед. сб. науч. тр. — 2013. — Вип 43. — С. 109-123. — Бібліогр.: 13 назв. — рос.
0321-1975 http://dspace.nbuv.gov.ua/handle/123456789/72645 531.36 |
|
Language |
ru
|
|
Relation |
Механика твердого тела
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|