On the averaging procedure over the Cantor set
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On the averaging procedure over the Cantor set
|
|
Creator |
Stanislavsky, A.A.
Weron, K. |
|
Subject |
Anomalous diffusion, fractals, and chaos
|
|
Description |
The procedure of averaging a smooth function over the normalized density of the Cantor set (A. Le Mehaute, R.R. Nigmatullin, L. Nivanen. Fleches du temps et geometric fractale. Paris: “Hermes”, 1998, Chapter 5) has been shown not to reduce exactly the convolution to the classical fractional integral of Riemann-Liouville type. Although the asymptotic behavior of the self-similar convolution kernel is very close to the product of a power and a log-periodic function, this is not obviously enough to claim the direct relationship between the fractals and the fractional calculus.
|
|
Date |
2015-04-06T16:39:40Z
2015-04-06T16:39:40Z 2001 |
|
Type |
Article
|
|
Identifier |
On the averaging procedure over the Cantor set / A.A. Stanislavsky, K. Weron // Вопросы атомной науки и техники. — 2001. — № 6. — С. 245-246. — Бібліогр.: 6 назв. — англ.
1562-6016 PACS: 05.40.-a, 05.45.-a, 05.46.-k. http://dspace.nbuv.gov.ua/handle/123456789/79898 |
|
Language |
en
|
|
Relation |
Вопросы атомной науки и техники
|
|
Publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
|
|