Запис Детальніше

О пороге отношения аппроксимации обобщенной задачи о выполнимости с предикатом размерности 3

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title О пороге отношения аппроксимации обобщенной задачи о выполнимости с предикатом размерности 3
 
Creator Михайлюк, В.А.
 
Subject Теория и методы оптимизации
 
Description При выполнении уникальной игровой гипотезы (UGC) для задачи Ins - Max - E3CSP - EQUAL (реоптимизация Max - E3CSP - EQUAL при добавлении одного ограничения) существует полиномиальный оптимальный (пороговый) Φ(αEQU ) - приближенный алгоритм, где αEQU ≈ 0.796 пороговое отношение аппроксимации Max - E3CSP - EQUAL и Φ(αEQU ) = 1 / (2 - αEQU ) ≈ 0.831 .
При виконанні унікальної ігрової гіпотези (UGC) для задачі Ins - Max - E3CSP - EQUAL (реоптимізація Max - E3CSP - EQUAL при добавленні одного обмеження) існує поліноміальний оптимальний (пороговий) Φ(αEQU ) -наближений алгоритм, де αEQU ≈ 0.796 порогове відношення апроксимації Max - E3CSP - EQUAL і Φ(αEQU ) =1/ (2 - αEQU ) ≈ 0.831.
If the unique games conjecture (UGC) is true, for the problem Ins - Max - E3CSP - EQUAL ( reoptimization of Max - E3CSP - EQUAL under insertion of one constraint) polynomial optimal (threshold) Φ(αEQU ) - approximation algorithm exists, where aEQU ≈ 0.796 is the threshold approximation ratio of Max - E3CSP - EQUAL and Φ(αEQU ) =1/ (2 - αEQU ) ≈ 0.831.
 
Date 2015-07-13T16:01:55Z
2015-07-13T16:01:55Z
2012
 
Type Article
 
Identifier О пороге отношения аппроксимации обобщенной задачи о выполнимости с предикатом размерности 3 / В.А. Михайлюк // Компьютерная математика: сб. науч. тр. — 2012. — № 2. — С. 156-164. — Бібліогр.: 12 назв. — рос.
ХХХХ-0003
http://dspace.nbuv.gov.ua/handle/123456789/84720
519.854
 
Language ru
 
Relation Компьютерная математика
 
Publisher Інститут кібернетики ім. В.М. Глушкова НАН України