Запис Детальніше

Канонические функции допустимых мер в полуплоскости

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Канонические функции допустимых мер в полуплоскости
 
Creator Малютин, К.Г.
Козлова, И.И.
 
Subject Математика
 
Description Введено понятие канонической функции меры в верхней полуплоскости. Доказано, что каноническая функция гамма-эпсилон допустимой меры принадлежит классу истинно субгармонических функций конечного гамма-эпсилон типа, ее полная мера совпадает с заданной мерой и ее коэффициенты Фурье — с коэффициентами Фурье этой меры. Кроме того, также доказано, что каноническая функция является единственной функцией из этого класса, которая обладает такими свойствами.
Введено поняття канонiчної функцiї мiри у верхнiй пiвплощинi. Доведено, що канонiчна
функцiя гамма-епсилон допустимої мiри належить класу iстинно субгармонiчних функцiй
скiнченного гамма-епсилон типу, її повна мiра збiгається iз заданою мiрою i її коефiцiєнти Фур’є — з коефiцiєнтами Фур’є цiєї мiри. Крiм того, також доведено, що канонiчна функцiя є єдиною функцiєю з цього класу, яка має такi властивостi.
The concept of a canonical function of measure in the half-plane is entered. It is proven that the
canonical function of a gamma-epsilon possible measure belongs to the class of proper subharmonic
functions of the finite gamma-epsilon type, its full measure coincides with the given measures, and
its Fourier coefficients coincide with those of this measure. It is also proven that the canonical
function is the unique function from this class, which has these properties.
 
Date 2015-08-26T17:39:42Z
2015-08-26T17:39:42Z
2013
 
Type Article
 
Identifier Канонические функции допустимых мер в полуплоскости / К.Г. Малютин, И.И. Козлова // Доповiдi Нацiональної академiї наук України. — 2013. — № 8. — С. 11–16. — Бібліогр.: 10 назв. — рос.
1025-6415
http://dspace.nbuv.gov.ua/handle/123456789/85855
517.547.22
 
Language ru
 
Relation Доповіді НАН України
 
Publisher Видавничий дім "Академперіодика" НАН України