Generalization of multifractal theory within quantum calculus
Electronic Archive of Sumy State University
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Generalization of multifractal theory within quantum calculus
|
|
Creator |
Oliemskoi, Oleksandr Ivanovych
Олемской, Александр Иванович Олємской, Олександр Іванович Shuda, Iryna Oleksandrivna Шуда, Ирина Александровна Шуда, Ірина Олександрівна Borysiuk, Vadym Mykolaiovych Борисюк, Вадим Николаевич Борисюк, Вадим Миколайович |
|
Subject |
quantum calculus
multifractal theory |
|
Description |
On the basis of the deformed series in quantum calculus, we generalize the partition function and the mass exponent of a multifractal, as well as the average of a random variable distributed over a self-similar set. For the partition function, such expansion is shown to be determined by binomial-type combinations of the Tsallis entropies related to manifold deformations, while the mass exponent expansion generalizes the known relation τq= Dq(q −1). We find the equation for the set of averages related to ordinary, escort, and generalized probabilities in terms of the deformed expansion as well. Multifractals related to the Cantor binomial set, exchange currency series, and porous-surface condensates are considered as examples. |
|
Publisher |
A Letters Journal Exploring the Frontiers of Physics
|
|
Date |
2011-02-21T09:24:49Z
2011-02-21T09:24:49Z 2010 |
|
Type |
Article
|
|
Identifier |
Olemskoy, A.I. Generalization of multifractal theory within quantum calculus [Текст] / A.I. Olemskoy, I.A. Shuda, V.N. Borisyuk // A Letters Journal Exploring the Frontiers of Physics. — 2010. — vol.89. — p.6
http://essuir.sumdu.edu.ua/handle/123456789/3035 |
|
Language |
en
|
|