Self-similarity degree of deformed statistical ensembles
Electronic Archive of Sumy State University
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Self-similarity degree of deformed statistical ensembles
|
|
Creator |
Oliemskoi, Oleksandr Ivanovych
Олемской, Александр Иванович Олємской, Олександр Іванович Shuda, Iryna Oleksandrivna Шуда, Ирина Александровна Шуда, Ірина Олександрівна Vaylenko, A.S. |
|
Subject |
self-similarity
dilatation jackson derivative homogeneous function |
|
Description |
We consider self-similar statistical ensembles with the phase space whose volume is invariant under the deformation that squeezes (expands) the coordinate and expands (squeezes) the momentum. The related probability distribution function is shown to possess a discrete symmetry with respect to manifold action of the Jackson derivative to be a homogeneous function with a self-similarity degree q fixed by the condition of invariance under (n+1)- fold action of the related dilatation operator. In slightly deformed phase space, we find the homogeneous function is defined with the linear dependence at n=0, whereas the self-similarity degree equals the gold mean at n=1, and q->1 in the limit n->(infinite). Dilatation of the homogeneous function is shown to decrease the self-similarity degree q at n>0.
|
|
Publisher |
Physica A
|
|
Date |
2011-02-21T09:23:31Z
2011-02-21T09:23:31Z 2009 |
|
Type |
Article
|
|
Identifier |
Olemskoy, A.I. Self-similarity degree of deformed statistical ensembles [Текст] / A.I. Olemskoy, I.O. Shuda, A.S. Vaylenko // Physica A. — 2009. — vol.388. — pp. 1929-1938
http://essuir.sumdu.edu.ua/handle/123456789/3032 |
|
Language |
en
|
|