Запис Детальніше

Self-similarity degree of deformed statistical ensembles

Electronic Archive of Sumy State University

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Self-similarity degree of deformed statistical ensembles
 
Creator Oliemskoi, Oleksandr Ivanovych
Олемской, Александр Иванович
Олємской, Олександр Іванович
Shuda, Iryna Oleksandrivna
Шуда, Ирина Александровна
Шуда, Ірина Олександрівна
Vaylenko, A.S.
 
Subject self-similarity
dilatation
jackson derivative
homogeneous function
 
Description We consider self-similar statistical ensembles with the phase space whose volume is invariant under the deformation that squeezes (expands) the coordinate and expands (squeezes) the momentum. The related probability distribution function is shown to possess a discrete symmetry with respect to manifold action of the Jackson derivative to be a homogeneous function with a self-similarity degree q fixed by the condition of invariance under (n+1)- fold action of the related dilatation operator. In slightly deformed phase space, we find the homogeneous function is defined with the linear dependence at n=0, whereas the self-similarity degree equals the gold mean at n=1, and q->1 in the limit n->(infinite). Dilatation of the homogeneous function is shown to decrease the self-similarity degree q at n>0.
 
Publisher Physica A
 
Date 2011-02-21T09:23:31Z
2011-02-21T09:23:31Z
2009
 
Type Article
 
Identifier Olemskoy, A.I. Self-similarity degree of deformed statistical ensembles [Текст] / A.I. Olemskoy, I.O. Shuda, A.S. Vaylenko // Physica A. — 2009. — vol.388. — pp. 1929-1938
http://essuir.sumdu.edu.ua/handle/123456789/3032
 
Language en