Нейросетевые методы и средства сжатия изображений
Електронного архіву Харківського національного університету радіоелектроніки (Open Access Repository of KHNURE)
Переглянути архів ІнформаціяПоле | Співвідношення | |
Creator |
Бобнев, Р. В.
|
|
Date |
2015-03-13T09:41:57Z
2015-03-13T09:41:57Z 2014 |
|
Identifier |
Бобнев, Р. В. Нейросетевые методы и средства сжатия изображений :автореф. дис. ... канд. техн. наук : 05.13.23 "Системы и средства искусственного интеллекта" / Р. В. Бобнев ; М-во образования нац. ун-т радиоэлектроники. – Харьков, 2014. – 171 с.
http://hdl.handle.net/123456789/1898 |
|
Description |
У роботі проведено аналіз проблеми стискання статичних зображень за допомогою штучних нейронних мереж (ШНМ). Запропоновано метод модифікації архітектури ШНМ Кохонена для усунення вимог до нормалізації вхідних даних, що дозволяє відкинути шар Гросберга у вирішенні задачі стискання зображень ШНМ зустрічного розповсюдження. Запропоновано модифікацію ГА на основі біологічного процесу апоптозу, що дозволяє уникнути проблеми попадання алгоритму у локальний екстремум у процесі багатокритеріальної оптимізації. Проведено аналіз можливих методів початкової ініціалізації базисних функцій (БФ) ШНМ радіально-базисних функцій (РБФ) за допомогою ШНМ Кохонена та Нейро-Газ а також алгоритмів «k-середніх» та «k-найближчих сусідів» для підвищення якості та швидкості навчання ШНМ РБФ. Достовірність результатів підтверджується експериментальними дослідженнями та впровадженнями. У середовищі Microsoft Visual Studio 2010 Express Edition проведено імітаційне моделювання різних задач апроксимації, класифікації, кластеризації та стискання зображень за допомогою статичних ШНМ.The thesis covers the analysis of the problem of image compression using artificial neural networks (ANN). The most frequently used static ANN architectures and learning algorithms are investigated for their application in solving the approximation, classification, clusterization, vector quantization and image compression problems. Several methods of Kohonen's and RBF ANN architecture modification are proposed with the purpose of improving usage flexibility and the efficiency of multidimensional data processing. Specifically, a Kohonen's ANN modification which eliminates requirement of input data normalization is developed. In addition, a method of initial initialization of centers and widths of basis functions for ANN RBF is proposed. Also hybrid genetic algorithm based on biological apoptosis which solves problem with hang in local extremums is discussed. Simulation in the Microsoft Visual Studio 2010 Express Edition environment shows the high efficiency of using ANNs for solving various problems of approximation, classification, clusterization, vector quantization and image compression. |
|
Language |
uk
|
|
Subject |
штучна нейронна мережа
апроксимація класифікація кластеризація стискання зображення метод навчання векторне квантування мережа Кохонена радіально-базисна функція генетичний алгоритм апоптоз метод навчання artificial neural network approximation classification clusterization image compression training algorithm vector quantization Kohonen's network radial basis function genetic algorithm apoptosis training method |
|
Title |
Нейросетевые методы и средства сжатия изображений
|
|
Type |
Abstract
|
|