Запис Детальніше

Математичне моделювання дифузійних потоків у двофазних стохастично неоднорідних шаруватих структурах

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Математичне моделювання дифузійних потоків у двофазних стохастично неоднорідних шаруватих структурах
Математическое моделирование диффузионных потоков в двухфазных стохастически неоднородных слоистых структурах
Mathematical modelling diffusion flows in two-phase stochastically nonhomogeneous stratified structures
 
Creator Давидок, Анастасія Євгенівна
 
Subject математичне моделювання
дифузія
стохастичний потік маси
ряд Неймана
випадкова шарувата структура
парний взаємовплив включень
пакет програм
математическое моделирование
диффузия
стохастический поток массы
ряд Неймана
случайная слоистая структура
парное взаимовлияние включений
пакет программ
mathematical modelling
diffusion
stochastical mass flow
Neumann series
random stratified structure
pair interaction of sublayers
software
 
Description Дисертація присвячена розробці нового підходу до математичного моделювання стохастичних потоків маси у двофазних тілах випадково неоднорідної шаруватої структури за довільних ймовірнісних розподілів фаз та стохастичних товщин включень. В рамках підходу на основі рівняння балансу маси отримано нове диференціальне рівняння на потік, обгрунтовано крайові умови, розв’язок крайової задачі знайдено у вигляді ряду Неймана, сформульовано і доведено теореми існування розв’язку крайової задачі, абсолютної та рівномірної збіжності ряду Неймана та проведено усереднення за ансамблем конфігурацій фаз. Досліджено міграцію домішкових частинок у шарі з випадково розташованими включеннями за рівномірного розподілу фаз та частковими випадками бета-розподілу включень для нульової і ненульової сталої початкових умов на функцію концентрації, а також у випадково неоднорідній
смузі з прошарками стохастичної товщини. Здійснено оцінку ефекту парного взаємовпливу шаруватих включень та похибки вхідних даних на усереднені потоки маси. Розроблено відповідне програмне забезпечення. Диссертация посвящена разработке нового подхода к математическому моделированию стохастических потоков массы в двухфазных телах случайно неоднородной слоистой структуры при произвольных вероятностных распределениях фаз и стохастических толщин включений. В рамках разработанного подхода на основании уравнения баланса массы получено новое дифференциальное уравнение на функцию диффузионного потока, обоснованы краевые условия первого рода. Построено интегро-дифференциальное уравнение со случайным ядром, эквивалентное исходной краевой задаче, решение которого получено в виде интегрального ряда Неймана. Сформулированы и доказаны теорема существования решения интегро-дифференциального уравнения и теорема
об абсолютной и равномерной сходимости ряда Неймана для моделей диффузионных процессов в стохастически неоднородных телах с учетом случайной структуры в коэффициентах краевой задачи. Усреднение стохастического потока примесного вещества проведено по ансамблю конфигураций фаз для случаев, когда в начальный момент времени примесь в теле отсутствует или задано ее постоянное ненулевое начальное распределение. Получены расчетные формулы для усредненного потока массы в слое со случайно расположенной прослойкой и в многослойной полосе с равномерным распределением фаз.
Рассмотрены различные варианты бета-распределения включений, описывающие случайные структуры, в которых область наиболее вероятного расположения включений находится около поверхности, где действует источник массы, в окрестности другой границы и посредине тела. Проведено компьютерное моделирование усредненных потоков для рассмотренных вариантов случайных структур и сделан их сравнительный анализ. Показано, что в случае больших коэффициентов диффузии примеси во включениях существует значительное отличие потоков массы в различных структурах, тогда как для случая больших коэффициентов в матрице расположение включений в области тела практически не влияет на поведение
усредненных диффузионных потоков. Установлена зависимость усредненных потоков примесного вещества от эффекта парного взаимовлияния слоистых включений. Проанализировано влияние параметров задачи на величину третьего слагаемого ряда Неймана. Показано, что наибольший эффект от парного взаимовлияния прослоек наблюдается для малых времен протекания процесса диффузии и при больших значениях характерной толщины включений. Используя разработанный подход исследованы функции потока массы в двухфазной трех- и многослойной полосах со стохастически расположенными прослойками случайной толщины. Рассмотрены случаи, когда толщина включений является случайной величиной с равномерным или треугольным распределениями на заданном интервале. Проанализированы результаты числовых экспериментов для разных этапов проведения процедур усреднения. Показано, что только одновременно для малых временных интервалов протекания процесса диффузии, значительной объемной доли включений и значений коэффициентов диффузии примеси в матрице меньших, чем во включениях, этап решения задачи, на котором продится усреднение по случайной толщине включений является существенным. На основании полученных расчетных формул разработан пакет программ, ко-
торый использован для исследования потоков водорода и углерода в слоистых материалах железо-медь и альфа-железо-никель. Проанализировано влияние различных видов погрешностей на решения краевых задач диффузии примесного вещества в однородной и случайно неоднородной слоистой полосах, сформулированных для функции потока массы. The thesis is devoted to development of new approach to mathematical modelling stochastical mass flows in two-phase bodies of randomly nonhomogeneous stratified structure at arbitrary probable distributions of phases and stochastical thicknesses of inclusions. Within the scope of the approach new differentual equation for the flow was obtained, initial and boundary conditions were argued, the solution of the initial-boundary value problem was found in the terms of Neumann series, the theorems of both solution existence and absolutely and uniformly convergence of Neumann series were formulated and proved; averaging procedure was carried out over the ensemble of phase configurations. Admixture particle migration was studied in a layer with randomly
disposed inclusions at uniform distribution of phases as well as partial cases of betadistribution
of inclusions for zero and non-zero constant initial conditions on the function of concentration and in a randomly nonhomogeneous strip with inclusions of stochastical thickness. Estimations of effect of both pair interaction of layered inclusions and an error of input data on the averaged mass flow were made. The corresponding software was disigned.
 
Date 2016-02-08T10:31:24Z
2016-02-08T10:31:24Z
2016
 
Type Autoreferat
 
Identifier Давидок А. Є. Математичне моделювання дифузійних потоків у двофазних стохастично неоднорідних шаруватих структурах : автореферат дисертації на здобуття наукового ступеня кандидата технічних наук : 01.05.02 – математичне моделювання та обчислювальні методи / Анастасія Євгенівна Давидок ; Міністерство освіти і науки України, Національний університет “Львівська політехніка”. – Львів, 2016. – 23 с. – Бібліографія: с. 16–18 (34 назви).
http://ena.lp.edu.ua:8080/handle/ntb/31206
 
Language ua
 
Publisher Національний університет "Львівська політехніка"