Запис Детальніше

Comparative analysis of packages Excel, MAPLE, MATLAB in statistical data processing

Журнал "Теорія та методика електронного навчання"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Comparative analysis of packages Excel, MAPLE, MATLAB in statistical data processing
Сравнительный анализ пакетов Excel, MAPLE, MATLAB при использовании их для статистической обработки данных
Порівняльний аналіз пакетів Excel, MAPLE, MATLAB при використанні їх під час статистичної обробки даних
 
Creator Крохмаль, Тетяна Миколаївна
Нікітенко, Олександр Миколайович
 
Subject



 
Description Statistical calculations without the aid of computers are complex and require the use of many tables of functions and quantiles of the standard distributions. This does not help to feel an element of novelty in the material under study, to modify tasks, etc. The use of specialized mathematical packages in training requires a fairly high level of training in mathematical statistics.
Статистические расчеты без помощи ЭВМ являются сложными и требуют использования многих таблиц функций и квантилей стандартных распределений. Это не способствует тому, чтобы почувствовать элемент новизны в материале, который изучается, изменить удовлетворительно условия задач и т.п.. Использование же специализированных математических пакетов при обучении требует достаточно высокого уровня подготовки по математической статистике.
Математична статистика – розділ математики, в якому на основі дослідних даних вивчаються ймовірнісні закономірності масових явищ. Обробки даних, що здійснюється методами математичної статистики, потребують всі галузі досліджень: медицина, біологія, соціологія, математика, фізика, педагогіка тощо. До найважливіших розділів математичної статистики відносять:статистичні ряди розподілу;оцінка параметрів розподілу;закони розподілу вибіркових характеристик;перевірка статистичних гіпотез;дисперсійний, кореляційно-регресійний, коваріаційний аналіз;факторний та кластерний аналіз тощо.Тут розглядається лише один з перелічених розділів математичної статистики – оцінка параметрів розподілу, до яких відносяться такі параметри як математичне сподівання випадкової величини, її дисперсія, середньоквадратичне відхилення, асиметрія, ексцес та гістограма.Статистичні розрахунки без допомоги ЕОМ є складними й потребують використання багатьох таблиць функцій та квантилів стандартних розподілів. Це не сприяє тому, щоб відчути елемент новизни в матеріалі, який вивчається, змінити задовільно умови задач тощо. Використання ж спеціалізованих математичних пакетів під час навчання вимагає досить високого рівня підготовки з математичної статистики.Більшість з існуючих математичних пакетів надають можливість користувачам оперувати з випадковими величинами, в тому числі й пакети, що набули широкої популярності: Excel, Maple, Matlab.Статистика в цих пакетах має свою розвинену систему команд для обслуговування прикладних задач. Команди для статистичних робіт призначені тим категоріям користувачів, котрі потребують середовища, яке дозволяє легко переходити від однієї математичної спеціалізації до іншої, не витрачаючи зайвого часу на трансформацію даних й опанування різноманітних програмних засобів у вигляді набору команд для аналізу даних з обчисленням різноманітних середніх та квантилів, графічного зображення даних у вигляді гістограм та графіків, а також для обробки даних [1].Метою цієї статті є порівняння результатів статистичних обчисленьта побудови гістограми, що здійснено за допомогою згаданих пакетів.Проілюструємо це, здійснивши обробку вибірки, обсяг якої складає 80 значень (табл. 1), за допомогою пакетів Excel, Maple, Matlab. Результати обробки вибірки, наведеної в табл. 1, подано в табл. 2.Таблиця 1Вибірка 13,3913,4613,2613,5913,5413,4213,5313,513,5213,3613,5713,3113,4213,5313,3313,3613,3713,4513,5713,3713,3913,3413,3313,2613,3813,5513,4313,4413,3113,3213,5813,313,6213,3413,6413,5613,5313,2913,513,3413,3713,4413,6613,513,413,2813,4313,413,5113,2413,4413,3313,3313,5813,4313,413,2313,4813,4913,2613,313,3413,5313,2513,5413,513,4213,2813,4513,413,5513,4713,413,5413,4813,2813,3213,3613,3813,31     Таблиця 2Результати обробки вибірки  ВручнуExcelMapleMatlabСереднє13,4213,4213.4213.42Дисперсія вибірки0,011362030,01136200,0113620,0114Стандартне відхилення0.106592800,10659280,1065930,1066Асиметричність0,1942020,20170280,1966600,1979Ексцес2,0440198–0,8841312,0698932,0961 Як випливає з результатів обчислень, всі пакети подають однакові результати для математичного сподівання (середнього), дисперсії та середньоквадратичного відхилення.Щодо коефіцієнтів асиметрії та ексцесу, то жоден результат не збігається.Аналіз результатів обчислень показав, що збіг між цими обчисленнями відсутній через різне визначення коефіцієнтів асиметрії та ексцесу в наведених пакетах.Теоретично коефіцієнт асиметрії, який характеризує несиметричність графіка функції розподілу і визначається як , де m3 – центральний емпіричний момент третього порядку, що визначається як;n – обсяг вибірки;xi – елемент вибірки;– вибіркове середнє, яке визначається як;σ – підправлене середнє квадратичне або стандартне відхилення випадкової величини, яке визначається як.В пакеті Excel коефіцієнт асиметрії обчислюється за виразом.В системі комп’ютерної математики Maple коефіцієнт асиметрії обчислюється за виразом .В системі комп’ютерної математики Matlab коефіцієнт асиметрії збігається з теоретичним.Теоретично коефіцієнт ексцесу, який характеризує сплющеність кривої розподілу та протяжність спадів, і визначається як , де m4 – центральний емпіричний момент четвертого порядку, який визначається як ; –3 враховує той факт, що коефіцієнт ексцесу для нормального закону розподілу випадкових величин дорівнює 3.Коефіцієнт ексцесу в пакеті Excel обчислюється за виразом.В системі комп’ютерної математики Maple коефіцієнт ексцесу обчислюється за виразом .В системі комп’ютерної математики Matlab коефіцієнт ексцесу обчислюється як теоретичний без урахування поправки на нормальний закон розподілу .Для візуалізації відмінностей обчислення коефіцієнтів асиметрії та ексцесу їх наведено на рис. 1. а бРис. 1. Відмінності обчислення коефіцієнтіва – коефіцієнт асиметрії; б – коефіцієнт ексцесу Результати побудови гістограми для цієї вибірки наведено на рис. 2.З цього рисунку видно, що гістограми, які побудовані вручну та за допомогою систем комп’ютерної математики Maple та Matlab, є однаковими, а побудована за допомогою пакету Excel, має багато відмінностей.Щоб з’ясувати причини такої розбіжності, проаналізуємо межі інтервалів на які поділено варіаційний ряд, що утворено з вибірки.Результати обчислення меж інтервалів, що виконано за допомогою пакету Excel, наведено в таблиці 3.Таблиця 3Межі інтервалів за пакетом Excel BinFrequency13,23113,28375813,33751213,391251413,4451413,49875713,55251513,606256More3 Результати обчислення меж інтервалів, що здійснено за допомогою інших пакетів, наведено в таблиці 4. а) б) в) г)Рис. 2. Гістограми: а – вручну; б – Excel; в – Maple; г –Matlab Таблиця 4Межі інтервалів за іншими обчисленнями BinFrequency13.23 .. 13.27778613.27778 .. 13.325561113.32556 .. 13.373331413.37333 .. 13.421111213.42111 .. 13.46889913.46889 .. 13.51667913.51667 .. 13.564441113.56444 .. 13.61222513.61222 .. 13.663 З порівняння даних з таблиць 3 та 4 випливає, що в пакеті Excel межі інтервалів обчислюються з похибками, а це призводить до неправильного визначення кількості елементів, які потрапляють в ці інтервали.Отже, для того, щоб правильно побудувати гістограму за допомогою пакету Excel, попередньо необхідно обчислити межі інтервалів.Таким чином, під час обчислення статистичних характеристик за допомогою комп’ютерних пакетів необхідно або здійснити попереднє порівняння результатів обчислень, що не завжди зручно, або з’ясувати за якими формулами відбуваються обчислення необхідних параметрів і вжити відповідних заходів для усунення можливих розбіжностей.
 
Publisher State institution of higher education «Kryvyi Rih National University»
 
Contributor


 
Date 2014-02-28
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion



 
Format application/pdf
 
Identifier http://ccjournals.eu/ojs/index.php/e-learn/article/view/384
 
Source Теория и методика электронного обучения; Vol 4 (2013); 148-153
Теорія та методика електронного навчання; Vol 4 (2013); 148-153
Theory and methods of e-learning; Vol 4 (2013); 148-153
2309-1495
 
Language ukr
 
Relation http://ccjournals.eu/ojs/index.php/e-learn/article/view/384/370
 
Rights Copyright (c) 2014 Theory and methods of e-learning