FD-метод для задачi на власнi значення в гiльбертовому просторi у випадку базової задачi з власними значеннями довiльної кратностi
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
FD-метод для задачi на власнi значення в гiльбертовому просторi у випадку базової задачi з власними значеннями довiльної кратностi
|
|
Creator |
Макаров, В.Л.
Романюк, Н.М. |
|
Subject |
Математика
|
|
Description |
Обгрунтовується новий алгоритм FD-методу для задачi на власнi значення для суми лiнiйних самоспряжених операторiв A + B з дискретним спектром, що дiють у деякому гiльбертовому просторi. Алгоритм полягає в апроксимацiї оператора B таким оператором ¯B, що задача на власнi значення для A + ¯B є простiшою, нiж для A + B. Розглядається випадок, коли оператор A + ¯B має власнi значення довiльної скiнченної кратностi. Запропонований пiдхiд базується на iдеї гомотопiї та має суперекспоненцiальну швидкiсть збiжностi, тобто збiгається швидше, нiж геометрична прогресiя, знаменник якої обернено пропорцiйний порядковому номеру вiдповiдного власного значення. Власнi пари можуть бути обчисленi паралельно для всiх заданих iндексiв. Чисельний приклад пiдтверджує теорiю. Обосновывается новый алгоритм FD-метода для задачи на собственные значения для суммы линейных самосопряженных операторов A + B с дискретным спектром, действующих в некотором гильбертовом пространстве. Алгоритм заключается в аппроксимации оператора B таким оператором ¯B, что задача на собственные значения для A + ¯B является проще, чем для A+ B. Рассматривается случай, когда оператор A+ ¯B имеет собственные значения произвольной конечной кратности. Предложенный подход основывается на идее гомотопии и имеет суперэкспоненциальную скорость сходимости, т. е. сходится быстрее, чем геометрическая прогрессия, знаменатель которой обратно пропорционален индексу соответствующего собственного значения. Собственные пары могут быть вычислены параллельно для всех заданных индексов. Численный пример подтверждает теорию. A new algorithm for the eigenvalue problems for linear self-adjont operators in the form of sum A + B with a discrete spectrum in a Hilbert space is proposed and justified. The algorithm is based on the approximation of B by an operator ¯B such that the eigenvalue problem for A + ¯B is computationally simpler than that for A + B. The operator A + ¯B is allowed to have multiple eigenvalues. The algorithm for this eigenvalue problem is based on the homotopy idea. It provides the super-exponential convergence rate, i. e. the rate faster than the convergence rate of a geometrical progression with the ratio, which is inversely proportional to the index of the eigenvalue under consideration. The eigenpairs can be computed in parallel for all prescribed indices. We supply a numerical example which supports the developed theory. |
|
Date |
2016-03-18T16:03:02Z
2016-03-18T16:03:02Z 2015 |
|
Type |
Article
|
|
Identifier |
FD-метод для задачi на власнi значення в гiльбертовому просторi у випадку базової задачi з власними значеннями довiльної кратностi / В.Л. Макаров, Н.М. Романюк // Доповiдi Нацiональної академiї наук України. — 2015. — № 5. — С. 26-34. — Бібліогр.: 13 назв. — укр.
1025-6415 http://dspace.nbuv.gov.ua/handle/123456789/96616 519.6/517.984.46 |
|
Language |
uk
|
|
Relation |
Доповіді НАН України
|
|
Publisher |
Видавничий дім "Академперіодика" НАН України
|
|