Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion
Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion
|
|
Creator |
Prytula, Z.
|
|
Subject |
reaction-diffusion system
fractional operator superdiffusion Brusselator model cubic nonlinearity Hopf and Turing instabilities dissipative structures |
|
Description |
The nonlinear dynamics in generalized activator-inhibitor systems with space fractional derivatives is studied. As an example, the Brusselator model and the reaction–diffusion model with cubic nonlinearity, in which the classical spatial differential operators are replaced by their fractional analogues, are considered. The fractional operator reflects the nonlocal behavior of superdiffusion. The spatially homogeneous, time independent solution has been found for each system. We have also studied its linear stability and determined instability conditions of both Hopf and Turing. It was established that the anomalous diffusion (superdiffusion) leads to the qualitative change of nonlinear dynamics in mentioned systems. |
|
Date |
2016-02-23T15:41:44Z
2016-02-23T15:41:44Z 2015 |
|
Type |
Article
|
|
Identifier |
Prytula Z. Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion / Z. Prytula // Вісник Національного університету "Львівська політехніка". Серія: Комп’ютерні науки та інформаційні технології : збірник наукових праць. – 2015. – № 826. – С. 230–237. – Bibliography: 24 titles.
http://ena.lp.edu.ua:8080/handle/ntb/31321 |
|
Language |
en
|
|
Publisher |
Видавництво Львівської політехніки
|
|