Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups
|
|
Creator |
Yampolsky, A.
|
|
Description |
We give a complete list of left-invariant unit vector fields on three-dimensional Lie groups equipped with a left-invariant metric that generate a totally geodesic submanifold in the unit tangent bundle of a group equipped with the Sasaki metric. As a result we obtain that each three-dimensional Lie group admits totally geodesic unit vector eld under some conditions on structural constants. From a geometrical viewpoint, the field is either parallel or a characteristic vector field of a natural almost contact structure on the group.
|
|
Date |
2016-09-28T19:09:06Z
2016-09-28T19:09:06Z 2007 |
|
Type |
Article
|
|
Identifier |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 253-276. — Бібліогр.: 9 назв. — англ.
1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106449 |
|
Language |
en
|
|
Relation |
Журнал математической физики, анализа, геометрии
|
|
Publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
|
|