Запис Детальніше

Daugavet Centers

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Daugavet Centers
 
Creator Bosenko, T.
Kadets, V.
 
Description An operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space E, and J : Y → E is the natural embedding operator, then E can be equivalently renormed in such a way that J ○ G : X → E is also a Daugavet center. This result was previously known for the particular case X = Y, G = Id and only in separable spaces. The proof of our generalization is based on an idea completely di®erent from the original one. We also give some geometric characterizations of the Daugavet centers, present a number of examples, and generalize (mostly in straightforward manner) to Daugavet centers some results known previously for spaces with the Daugavet property.
 
Date 2016-10-01T15:04:24Z
2016-10-01T15:04:24Z
2010
 
Type Article
 
Identifier Daugavet Centers / T. Bosenko, V. Kadets // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 3-20. — Бібліогр.: 14 назв. — англ.
1812-9471
http://dspace.nbuv.gov.ua/handle/123456789/106629
 
Language en
 
Relation Журнал математической физики, анализа, геометрии
 
Publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України