Запис Детальніше

Antipodal Polygons and Half-Circulant Hadamard Matrices

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Antipodal Polygons and Half-Circulant Hadamard Matrices
 
Creator Medianik, A.I.
 
Description As known, the question on the existence of Hadamard matrices of order m = 4n, where n is an arbitrary natural number, is equivalent to the question on the possibility to inscribe a regular hypersimplex into the (4n ¡ 1)-dimensional cube. We introduced a class of Hadamard matrices of order 4n of half-circulant type in 1997 and a class of antipodal n-gons inscribed into a regular (2n-1)-gon. In 2004 we proved that a half-circulant Hadamard ma- trix of order 4n exists if and only if there exist antipodal n-gons inscribed into a regular (2n-1)-gon. On this background there was developed the method of constructing of the Hadamard matrices of order 4n, which is universal, i.e., it can be applied to any arbitrary natural number n, including a prime number case, that usually requires the individual approach to the construction of the Hadamard matrix of corresponding order. In the paper, there are obtained the necessary and su±cient algebraic-geometric conditions for the existence of antipodal polygons allowing to justify the inductive approach to be used to the proof of existence theorems for Hadamard matrices of arbitrary order 4n, n ≥ 3.
 
Date 2016-10-01T15:08:20Z
2016-10-01T15:08:20Z
2010
 
Type Article
 
Identifier Antipodal Polygons and Half-Circulant Hadamard Matrices / A.I. Medianik // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 56-72. — Бібліогр.: 10 назв. — англ.
1812-9471
http://dspace.nbuv.gov.ua/handle/123456789/106633
 
Language en
 
Relation Журнал математической физики, анализа, геометрии
 
Publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України