Запис Детальніше

Rate of Decay of the Bernstein Numbers

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Rate of Decay of the Bernstein Numbers
 
Creator Plichko, A.
 
Description We show that if a Banach space X contains uniformly complemented l₂ⁿ 's then there exists a universal constant b = b(X) > 0 such that for each Banach space Y, and any sequence dn ↓ 0 there is a bounded linear operator T : X → Y with the Bernstein numbers bn(T) of T satisfying b⁻¹dn ≤ bn(T) ≤ bdn for all n.
Показано, что для B-выпуклого сепарабельного пространства X, произвольного банахова пространства Y и любой последовательности dn ↓ 0 существует такой ограниченный линейный оператор T : X → Y и b > 0, что для всех чисел Бернштейна bn(T) оператора T имеем для любого n b⁻¹dn ≤ bn(T) ≤ bdn.
 
Date 2016-10-03T18:11:01Z
2016-10-03T18:11:01Z
2013
 
Type Article
 
Identifier Rate of Decay of the Bernstein Numbers / A. Plichko // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 59-72. — Бібліогр.: 26 назв. — англ.
1812-9471
http://dspace.nbuv.gov.ua/handle/123456789/106737
 
Language en
 
Relation Журнал математической физики, анализа, геометрии
 
Publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України