Новые доказательства важных теорем бестипового экстенсионального λ–исчисления
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Новые доказательства важных теорем бестипового экстенсионального λ–исчисления
|
|
Creator |
Лялецкий, А.А.
|
|
Subject |
Кибернетика
|
|
Description |
Построены новые доказательства двух теорем бестипового экстенсионального λ-исчисления: теоремы Карри о том, что произвольный λ-терм имеет βŋ-нормальную форму тогда и только тогда, когда он имеет β-нормальную форму, и теоремы нормализации для βŋ-редукции. Приведенный подход базируется на двух широко известных результатах: теореме об откладывании ŋ-редукции и свойстве сильной нормализуемости ŋ-редукции, которые позволяют естественным образом распространить некоторые утверждения с обычного λ-исчисления на экстенсиональный случай.
Наведено нові доведення двох теорем безтипового екстенсіонального λ-числення: теореми Каррі про те, що будь-який λ-терм має βŋ-нормальну форму тоді й тільки тоді, коли він має β-нормальну форму, та теореми нормалізації для βŋ-редукції. Даний підхід грунтується на двох широко відомих результатах: теоремі про відкладання ŋ-редукції та властивості сильної нормалізовності ŋ-редукції, які дозволяють природним чином розповсюдити деякі твердження зі звичайного λ-числення на екстенсіональний випадок. The paper contains new proofs of the following two theorems for the untyped extensional λ-calculus: the Curry theorem that any λ-term has a βŋ-normal form if and only if it has a β-normal form, and the normalization theorem for βŋ-reduction. Our approach is based on the following well-known results: the postponement theorem of ŋ-reduction and the strong normalization property of ŋ-reduction, which allow one to extend, in a natural way, some propositions from the usual λ-calculus onto the extensional case. |
|
Date |
2017-04-13T19:25:36Z
2017-04-13T19:25:36Z 2014 |
|
Type |
Article
|
|
Identifier |
Новые доказательства важных теорем бестипового экстенсионального λ–исчисления / А.А. Лялецкий // Кибернетика и системный анализ. — 2014. — Т. 50, № 4. — С. 53-63. — Бібліогр.: 5 назв. — рос.
http://dspace.nbuv.gov.ua/handle/123456789/115820 510.584 |
|
Language |
ru
|
|
Relation |
Кибернетика и системный анализ
|
|
Publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України
|
|