Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
|
|
Creator |
Kuplevakhsky, S.V.
|
|
Subject |
Сверхпроводимость и мезоскопические структуры
|
|
Description |
We present a complete, exact solution of the problem of the magnetic properties of layered superconductors with an infinite number of superconducting layers in parallel fields H 0. Based on a new exact variational method, we determine the type of all stationary points of both the Gibbs and Helmholtz free-energy functionals. For the Gibbs free-energy functional, they are either points of strict, strong minima or saddle points. All stationary points of the Helmholtz free-energy functional are those of strict, strong minima. The only minimizes of both the functionals are the Meissner (0-soliton) solution and soliton solutions. The latter represent equilibrium Josephson vortices. In contrast, non-soliton configurations (interpreted in some previous publications as «isolated fluxons» and «fluxon lattices») are shown to be saddle points of the Gibbs free-energy functional: They violate the conservation law for the flux and the stationarity condition for the Helmholtz free-energy functional. For stable solutions, we give a topological classification and establish a one-to-one correspondence with Abrikosov vortices in type-II superconductors. In the limit of weak interlayer coupling, exact, closed-form expressions for all stable solutions are derived: They are nothing but the «vacuum state» and topological solitons of the coupled static sine-Gordon equations for the phase differences. The stable solutions cover the whole field range 0 < H < ∞ and their stability regions overlap. Soliton solutions exist for arbitrary small transverse dimensions of the system, provided the field H to be sufficiently high. Aside from their importance for weak superconductivity, the new soliton solutions can find applications in different fields of nonlinear physics and applied mathematics. |
|
Date |
2017-06-10T06:56:47Z
2017-06-10T06:56:47Z 2004 |
|
Type |
Article
|
|
Identifier |
Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors / S.V. Kuplevakhsky // Физика низких температур. — 2004. — Т. 30, № 7-8. — С. 856-873. — Бібліогр.: 32 назв. — англ.
0132-6414 PACS: 74.50.+r, 74.80.Dm, 05.45.Yv http://dspace.nbuv.gov.ua/handle/123456789/119840 |
|
Language |
en
|
|
Relation |
Физика низких температур
|
|
Publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
|
|