Запис Детальніше

Target prediction in blast furnace based on BP network optimized by variable neighborhood PSO

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Target prediction in blast furnace based on BP network optimized by variable neighborhood PSO
 
Creator Yang Kai
Zhijun He
 
Subject Modeling and simulation
 
Description This paper combine the improved PSO algorithm (Analysis of Particle Swarm Optimization Algorithm) with the BP neural network for prediction of Silicon content in hot metal. Firstly, the varying visual mechanism is drawing into the standard PSO through changing the neighbor structure dynamically with each particles, in order to enhance the local and global searching ability in particle swarm. Afterwards, the improved algorithm is used to optimize the weights and threshold of BP neural network to avoid falling into local extremum. Finally, the prediction model of Si content in hot metal is built based on BP network optimized by Variable neighborhood PSO. The average relative error of the prediction model is 6.7% based on the data from blast furnace.
 
Date 2017-06-14T09:43:36Z
2017-06-14T09:43:36Z
2016
 
Type Article
 
Identifier Target prediction in blast furnace based on BP network optimized by variable neighborhood PSO / Yang Kai, Zhijun He // Functional Materials. — 2016. — Т. 23, № 3. — С. 463-467. — Бібліогр.: 8 назв. — англ.
1027-5495
DOI: dx.doi.org/10.15407/fm23.03.463
http://dspace.nbuv.gov.ua/handle/123456789/121413
 
Language en
 
Relation Functional Materials
 
Publisher НТК «Інститут монокристалів» НАН України