Запис Детальніше

Power geometry in nonlinear partial differential equations

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Power geometry in nonlinear partial differential equations
 
Creator Bruno, A.D.
 
Description Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG are based on these linear relations. They allow to simplify equations, to resolve their singularities (including singular perturbations), to isolate their first approximations, and to find asymptotic forms and asymptotic expansions of their solutions. In particular, they give simple methods to identify the equations and systems as quasihomogeneous, and then to introduce for them self-similar coordinates. As an application, we consider the stationary spatial axially symmetric flow of the viscous compressible heat conducting gas around a semi-infinite needle. Other application: finding blow-up solutions.
 
Date 2017-09-23T16:47:37Z
2017-09-23T16:47:37Z
2008
 
Type Article
 
Identifier Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ.
1810-3200
2000 MSC. 200134, 200135
http://dspace.nbuv.gov.ua/handle/123456789/124295
 
Language en
 
Relation Український математичний вісник
 
Publisher Інститут прикладної математики і механіки НАН України