Expansions of solutions to the equation P₁² by algorithms of power geometry
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Expansions of solutions to the equation P₁² by algorithms of power geometry
|
|
Creator |
Bruno, A.D.
Kudryashov, N.A. |
|
Description |
Algorithms of Power Geometry allow to find all power expansions of solutions to ordinary differential equations of a rather general type. Among these, there are Painlev´e equations and their generalizations. In the article we demonstrate how to find by these algorithms all power expansions of solutions to the equation P₁² at the points z = 0 and z = ∞. Two levels of the exponential additions to the expansions of solutions near z = ∞ are computed. We also describe an algorithm of computation of a basis of a minimal lattice containing a given set.
|
|
Date |
2017-09-24T13:01:38Z
2017-09-24T13:01:38Z 2009 |
|
Type |
Article
|
|
Identifier |
Expansions of solutions to the equation P₁² by algorithms of power geometry / A.D. Bruno, N.A. Kudryashov // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 311-337. — Бібліогр.: 48 назв. — англ.
1810-3200 http://dspace.nbuv.gov.ua/handle/123456789/124362 2000 MSC. 34E05, 41A58, 41A60. |
|
Language |
en
|
|
Relation |
Український математичний вісник
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|