Запис Детальніше

Expansions of solutions to the equation P₁² by algorithms of power geometry

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Expansions of solutions to the equation P₁² by algorithms of power geometry
 
Creator Bruno, A.D.
Kudryashov, N.A.
 
Description Algorithms of Power Geometry allow to find all power expansions of solutions to ordinary differential equations of a rather general type. Among these, there are Painlev´e equations and their generalizations. In the article we demonstrate how to find by these algorithms all power expansions of solutions to the equation P₁² at the points z = 0 and z = ∞. Two levels of the exponential additions to the expansions of solutions near z = ∞ are computed. We also describe an algorithm of computation of a basis of a minimal lattice containing a given set.
 
Date 2017-09-24T13:01:38Z
2017-09-24T13:01:38Z
2009
 
Type Article
 
Identifier Expansions of solutions to the equation P₁² by algorithms of power geometry / A.D. Bruno, N.A. Kudryashov // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 311-337. — Бібліогр.: 48 назв. — англ.
1810-3200
http://dspace.nbuv.gov.ua/handle/123456789/124362
2000 MSC. 34E05, 41A58, 41A60.
 
Language en
 
Relation Український математичний вісник
 
Publisher Інститут прикладної математики і механіки НАН України