Запис Детальніше

Uniqueness and topological properties of number representation

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Uniqueness and topological properties of number representation
 
Creator Dovgoshey, O.
Martio, O.
Ryazanov, V.
Vuorinen, M.
 
Description Let b be a complex number with |b| > 1 and let D be a finite subset of the complex plane C such that 0 ∊ D and card D ≥ 2. A number z is representable by the system (D, b) if z = Σajbj , where aj ∊ D. We denote by F the set of numbers which are representable by (D, b) with M = −1. The set W consists of numbers that are (D, b) representable with aj = 0 for all negative j. Let F1 be a set of numbers in F that can be uniquely represented by (D, b). It is shown that: The set of all extreme points of F is a subset of F1. If 0 ∊ F1, then W is discrete and closed. If b ∊ {z : |z| > 1}\D′, where D′ is a finite or countable set associated with D and W is discrete and closed, then 0 ∊ F1. For a real number system (D, b), F is homeomorphic to the Cantor set C iff F\F1 is nowhere dense subset of R.
 
Date 2017-09-30T11:12:21Z
2017-09-30T11:12:21Z
2004
 
Type Article
 
Identifier Uniqueness and topological properties of number representation / O. Dovgoshey, O. Martio, V. Ryazanov, M. Vuorinen // Український математичний вісник. — 2004. — Т. 1, № 3. — С. 331-348. — Бібліогр.: 12 назв. — англ.
1810-3200
2000 MSC. 11A67.
http://dspace.nbuv.gov.ua/handle/123456789/124622
 
Language en
 
Relation Український математичний вісник
 
Publisher Інститут прикладної математики і механіки НАН України