Побудова найкращих чебишовських наближень сплайнами
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Побудова найкращих чебишовських наближень сплайнами
|
|
Creator |
Вакал, Л.П.
|
|
Subject |
Теорія та засоби обчислювального інтелекту
|
|
Description |
З метою побудови найкращого чебишовського наближення для заданої функції поліноміальним сплайном степеня n з r фіксованими вузлами у статті пропонується застосувати після відповідної модифікації алгоритм апроксимації функції багатьох змінних узагальненим многочленом. У цьому алгоритмі використовується зведення до задачі лінійного програмування з головною двоїстою максимум-задачею. Аналіз чисельних результатів показав, що у більшості випадків модифікований алгоритм знаходить більш точні наближення сплайнами, ніж інші відомі алгоритми.
In order to compute the best Chebyshev (uniform) approximation for a given function by polynomial spline of degree n with r fixed knots it is proposed to apply, after an appropriate modification, an algorithm for approximating many-variables function by a generalized polynomial. In the algorithm a reduction to the linear programming problem with the main dual maximum-problem is used. Analysis of the numerical results showed that in most cases the modified algorithm has computed spline approximations more precisely than other known algorithms. |
|
Date |
2018-06-04T19:37:26Z
2018-06-04T19:37:26Z 2017 |
|
Type |
Article
|
|
Identifier |
Побудова найкращих чебишовських наближень сплайнами / Л.П. Вакал // Штучний інтелект. — 2017. — № 2. — С. 94-100. — Бібліогр.: 15 назв. — укр.
1561-5359 http://dspace.nbuv.gov.ua/handle/123456789/133667 004.021:519.651 004.021:519.651 |
|
Language |
uk
|
|
Relation |
Штучний інтелект
|
|
Publisher |
Інститут проблем штучного інтелекту МОН України та НАН України
|
|