Запис Детальніше

On a numerical quasiconformal mapping method for the medium parameters identification using applied quasipotential tomography

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On a numerical quasiconformal mapping method for the medium parameters identification using applied quasipotential tomography
Числовий метод квазіконформних відображень ідентифікації параметрів середовищ за даними томографії прикладених квазіпотенціалів
 
Creator Бомба, А.
Бойчура, М.
Bomba, A.
Boichura, M.
 
Contributor Рівненський державний гуманітарний університет
Rivne State Humanitarian University
 
Subject томографія прикладених квазіпотенціалів
квазіконформні відображення
ідентифікація
нелінійні задачі
applied quasipotential tomography
quasiconformal mappings
identification
nonlinear problems
519.6
 
Description Розглянуто задачу iдентифiкацiї параметрiв сплескiв коефiцiєнта провiдностi сере-
довища за даними томографiї прикладених квазiпотенцiалiв. Запропоновано метод
реконструкцiї зображення, згiдно з яким задача аналiзу зводиться до застосування
числових методiв квазiконформних вiдображень, а задача синтезу - до розв’язання
задачi параметричної iдентифiкацiї. Наведено результати числових експериментiв та
проведено їх аналiз.
The problem of parameters identification of the bursts of the medium conductivity coefficient
according to the tomography of the applied quasipotentials is considered. The
method of image reconstruction is suggested, according to which the problem of analysis
is reduced to the application of numerical methods of quasiconformal mappings, and the
problem of synthesis is reduced to the solving the problem of parametric identification.
The results of numerical experiments are presented and their analysis is carried out.
 
Date 2018-06-05T14:12:26Z
2018-06-05T14:12:26Z
2017-06-15
2017-06-15
 
Type Article
 
Identifier Bomba A. On a numerical quasiconformal mapping method for the medium parameters identification using applied quasipotential tomography / A. Bomba, M. Boichura // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 10–20.
2312-9794
http://ena.lp.edu.ua:8080/handle/ntb/41468
Bomba A. On a numerical quasiconformal mapping method for the medium parameters identification using applied quasipotential tomography / A. Bomba, M. Boichura // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 10–20.
 
Language en
 
Relation Mathematical Modeling and Computing, 1 (4), 2017
[1] BombaA.Ya., Kroka L. L. Tchysloviy metod kvazikonformnogo vidobrazhennya rozv’yazannya zadach identifikatsii koyefitsienta elektrichnoi providnosti za danymy tomografii prykladenikh potentsialiv. Volyns’kiy matematychniy visnyk. Seriya prykladna matematika. 11(20), 24–33 (2014), (in Ukrainian).
[2] BombaA.Ya., Kroka L. L. Chislovi metody kompleksnogo analizu pry rozv’yazanni odnogo klasu neliniynikh eliptichnikh zadach za umov identifikatsii parametriv. Matematychne ta komp’yuterne modelyuvannya. Seriya: Fizyko-matematychni nauki: zb. nauk. prats’. 10, 24–33 (2014), (in Ukrainian).
[3] BombaA.Ya., BoichuraM.V. One numerical complex analysis method for parameters identification of piecewise homogeneous conductivity media with using applied quasipotential tomographic data. Matematychne ta komp’yuterne modelyuvannya. Seriya: Tekhnichni nauki: zb. nauk. prats’. 14, 5–17 (2016).
[4] GorbM. S., GusievaO.V. Vybir matematychnoi modeli ob’yektu doslidzhennya v elektroimpedansniy tomografi. Visnyk NTUU “KPI”. Seriya Radiotekhnika. Radioaparatobuduvannya. 52, 120–128 (2013), (in Ukrainian).
[5] SushkoН.O., RybinO.Н. Vizualizatsiya rozpodilu poverkhnevykh providnostey metodom zon providnosti. Visnyk NTUU “KPI”. Seriya Radiotekhnika. Radioaparatobuduvannya. 5, 7–17 (2014), (in Ukrainian).
[6] Gavrilov S.V. Iteratsionnyy metod resheniya trekhmernoy zadachi elektroimpedansnoy tomografii v sluchaye kusochno-postoyannoy provodimosti i neskol’kikh izmereniy na granitse. Vychislitel’nyye metody i programmirovaniye: novyye vychislitel’nyye tekhnologii. 14(1), 26–30 (2013), (in Russian).
[7] SherinaYe. S., StarchenkoA.V. Chislennoye modelirovaniye zadachi elektroimpedansnoy tomografii i issledovaniye podkhoda na osnove metoda konechnykh obyemov. Byulleten’ sibirskoy meditsiny. 4, 156–164 (2014), (in Russian).
[8] DenyerC.W. L. Electronics for Real-Time and Three-Dimensional Electrical Impedance Tomographs: PhD Thesis. Oxford (1996).
[9] HolderD. Electrical Impedance Tomography. Methods, History and Applications. London, Institute of Physics (2005).
[10] HouT.C., Lynch J.P. Electrical Impedance Tomographic Methods for Sensing Strain Fields and Crack Damage in Cementitious Structures. Journal of Intelligent Material Systems and Structures. 20, 1363–1379 (2009).
[11] HaddarH., KressR. Conformal Mapping and an Inverse Impedance Boundary Value Problem. Journal of Inverse and Ill-posed Problems. 14(8), 785–804 (2006).
[12] LiuD. KolehmainenV., Siltanen S. and others. Estimation of Conductivity Changes in a Region of Interest with Electrical Impedance. Inverse Problems and Imaging. 9(1), 211–229 (2014).
[13] SunT. Tsuda S., ZaunerK. and others. On-chip electrical impedance tomography for imaging biological cells. Biosensors and Bioelectronics. 25(5), 1109–1115 (2010).
[14] BombaA.Ya., Kashtan S. S., Prigornits’kiyD.O., Yaroshchak S.V. Metody kompleksnogo analizu: monografiya. Rivne, NUVGP (2013), (in Ukrainian).
[15] BombaA.Ya., Bulavats’kiyV.M., Skopets’kiyV.V. Neliniyni matematichni modeli protsesiv geogidrodinamiki. Kyiv, Naukova dumka (2007), (in Ukrainian).
[16] Lavrent’yevM.A., ShabatB.V. Metody teorii funktsii kompleksnogo peremennogo. Moscow, Nauka (1973), (in Russian).
[17] Somersalo E., CheneyM., IsaacsonD. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52(4), 1023–1040 (1992).
[18] Ortega J.M., RheinboldtW.C. Iterative Solution of Nonlinear Equations in Several Variables. Classics in Appl. Math. SIAM Publications, Philadelphia, 2nd edition (2000).
[19] eOliveiraH.A. Jr., Ingber L., PetragliaA. and others. Stochastic Global Optimization and Its Applications with Fuzzy Adaptive Simulated Annealing. Heidelberg, Springer-Verlag (2012).
[20] SamarskiyA.A. Teoriya raznostnykh skhem. Moscow, Nauka (1977), (in Russian).
[21] SherinaYe. S., StarchenkoA.V. Raznostnyye skhemy na osnove metoda konechnykh ob’yomov dlya zadachi elektroimpedansnoy tomografii. Vestnik tomskogo gosudarstvennogo universiteta. Matematika i mekhanika. 3(29), 25-38 (2014), (in Russian).
[1] BombaA.Ya., Kroka L. L. Tchysloviy metod kvazikonformnogo vidobrazhennya rozv’yazannya zadach identifikatsii koyefitsienta elektrichnoi providnosti za danymy tomografii prykladenikh potentsialiv. Volyns’kiy matematychniy visnyk. Seriya prykladna matematika. 11(20), 24–33 (2014), (in Ukrainian).
[2] BombaA.Ya., Kroka L. L. Chislovi metody kompleksnogo analizu pry rozv’yazanni odnogo klasu neliniynikh eliptichnikh zadach za umov identifikatsii parametriv. Matematychne ta komp’yuterne modelyuvannya. Seriya: Fizyko-matematychni nauki: zb. nauk. prats’. 10, 24–33 (2014), (in Ukrainian).
[3] BombaA.Ya., BoichuraM.V. One numerical complex analysis method for parameters identification of piecewise homogeneous conductivity media with using applied quasipotential tomographic data. Matematychne ta komp’yuterne modelyuvannya. Seriya: Tekhnichni nauki: zb. nauk. prats’. 14, 5–17 (2016).
[4] GorbM. S., GusievaO.V. Vybir matematychnoi modeli ob’yektu doslidzhennya v elektroimpedansniy tomografi. Visnyk NTUU "KPI". Seriya Radiotekhnika. Radioaparatobuduvannya. 52, 120–128 (2013), (in Ukrainian).
[5] SushkoN.O., RybinO.N. Vizualizatsiya rozpodilu poverkhnevykh providnostey metodom zon providnosti. Visnyk NTUU "KPI". Seriya Radiotekhnika. Radioaparatobuduvannya. 5, 7–17 (2014), (in Ukrainian).
[6] Gavrilov S.V. Iteratsionnyy metod resheniya trekhmernoy zadachi elektroimpedansnoy tomografii v sluchaye kusochno-postoyannoy provodimosti i neskol’kikh izmereniy na granitse. Vychislitel’nyye metody i programmirovaniye: novyye vychislitel’nyye tekhnologii. 14(1), 26–30 (2013), (in Russian).
[7] SherinaYe. S., StarchenkoA.V. Chislennoye modelirovaniye zadachi elektroimpedansnoy tomografii i issledovaniye podkhoda na osnove metoda konechnykh obyemov. Byulleten’ sibirskoy meditsiny. 4, 156–164 (2014), (in Russian).
[8] DenyerC.W. L. Electronics for Real-Time and Three-Dimensional Electrical Impedance Tomographs: PhD Thesis. Oxford (1996).
[9] HolderD. Electrical Impedance Tomography. Methods, History and Applications. London, Institute of Physics (2005).
[10] HouT.C., Lynch J.P. Electrical Impedance Tomographic Methods for Sensing Strain Fields and Crack Damage in Cementitious Structures. Journal of Intelligent Material Systems and Structures. 20, 1363–1379 (2009).
[11] HaddarH., KressR. Conformal Mapping and an Inverse Impedance Boundary Value Problem. Journal of Inverse and Ill-posed Problems. 14(8), 785–804 (2006).
[12] LiuD. KolehmainenV., Siltanen S. and others. Estimation of Conductivity Changes in a Region of Interest with Electrical Impedance. Inverse Problems and Imaging. 9(1), 211–229 (2014).
[13] SunT. Tsuda S., ZaunerK. and others. On-chip electrical impedance tomography for imaging biological cells. Biosensors and Bioelectronics. 25(5), 1109–1115 (2010).
[14] BombaA.Ya., Kashtan S. S., Prigornits’kiyD.O., Yaroshchak S.V. Metody kompleksnogo analizu: monografiya. Rivne, NUVGP (2013), (in Ukrainian).
[15] BombaA.Ya., Bulavats’kiyV.M., Skopets’kiyV.V. Neliniyni matematichni modeli protsesiv geogidrodinamiki. Kyiv, Naukova dumka (2007), (in Ukrainian).
[16] Lavrent’yevM.A., ShabatB.V. Metody teorii funktsii kompleksnogo peremennogo. Moscow, Nauka (1973), (in Russian).
[17] Somersalo E., CheneyM., IsaacsonD. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52(4), 1023–1040 (1992).
[18] Ortega J.M., RheinboldtW.C. Iterative Solution of Nonlinear Equations in Several Variables. Classics in Appl. Math. SIAM Publications, Philadelphia, 2nd edition (2000).
[19] eOliveiraH.A. Jr., Ingber L., PetragliaA. and others. Stochastic Global Optimization and Its Applications with Fuzzy Adaptive Simulated Annealing. Heidelberg, Springer-Verlag (2012).
[20] SamarskiyA.A. Teoriya raznostnykh skhem. Moscow, Nauka (1977), (in Russian).
[21] SherinaYe. S., StarchenkoA.V. Raznostnyye skhemy na osnove metoda konechnykh ob’yomov dlya zadachi elektroimpedansnoy tomografii. Vestnik tomskogo gosudarstvennogo universiteta. Matematika i mekhanika. 3(29), 25-38 (2014), (in Russian).
 
Rights © 2017 Lviv Polytechnic National University CMM IAPMM NASU
 
Format 10-20
11
application/pdf
image/png
 
Coverage Lviv
 
Publisher Lviv Politechnic Publishing House