Запис Детальніше

Blood cells classification by image color and intensity features clustering

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Blood cells classification by image color and intensity features clustering
 
Creator Melnyk, R. A.
Dubytskyi, A. O.
 
Contributor Lviv Polytechnic National University
 
Subject computer vision
visual object detection
visual object classification
binarization
connected component labeling
intensity feature
color feature
cluster analysis
 
Description A new approach for cells detection and classification on blood smear images is considered. Benefit of
4-connected over 8-connected component labeling for cell detection is shown. Color and intensity histogram clustering are proposed to extract common features for cells classification. A new approach for k-means initial centroids detection proposed. The algorithms effectiveness was tested and estimated for some blood smear images. The algorithm examples, figures and result table to illustrate the approach are presented.
 
Date 2018-03-01T14:37:05Z
2018-03-01T14:37:05Z
2015
 
Type Conference Abstract
 
Identifier Melnyk R. A. Blood cells classification by image color and intensity features clustering / R. A. Melnyk, A. O. Dubytskyi // Litteris et Artibus : proceedings of the 5th International youth science forum, November 26–28, 2015, Lviv, Ukraine / Lviv Polytechnic National University. – Lviv : Lviv Polytechnic Publishing House, 2015. – P. 46–49. – Bibliography: 7 titles.
http://ena.lp.edu.ua:8080/handle/ntb/39493
 
Language en
 
Relation [1] C. Hc sliding windows: Object localization by efficient subwindow search”, CVPR, 2008. [2] Pham, Dzung L.; Xu, Chenyang; Prince, Jerry L., "Current Methods in Medical Image Segmentation". Annual Review of Biomedical Engineering 2: 315– 337, 2000. [3] Luigi Di Stefano, Andrea Bulgarelli, “A Simple and Efficient Connected Components Labeling Algorithm,” ICIAP, 10th International Conference on Image Analysis and Processing, pp.322, 1999. [4] N. Otsu, ‘‘A threshold selection method from gray level histograms,’’ IEEE Trans. Syst. Man Cybern. SMC-9, 62–66, 1979. [5] MacKay, David, "Chapter 20. An Example Inference Task: Clustering". Information Theory, Inference and Learning Algorithms. Cambridge University Press. pp. 284–292. ISBN 0-521-64298-1. MR 2012999, 2003 [6] Orchard M, Bouman C, “Color quantization of images”. IEEE Trans Signal Process 39(12):2677- 2690, 1991. [7] P. Maslak, “Normal peripheral blood smear - 1.” http://imagebank.hematology.org/AssetDetail.aspx?A ssetID=3666&AssetType=Asset, September 2008.
 
Format 46-49
application/pdf
 
Coverage UA
Lviv
 
Publisher Lviv Polytechnic Publishing House