Запис Детальніше

Combining RapidEye satellite images and forest inventory data for assesment of forest biomass

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Combining RapidEye satellite images and forest inventory data for assesment of forest biomass
 
Creator Myroniuk, Viktor
Bilous, Andrii
 
Contributor National University of Life and Environmental Sciences of Ukraine
 
Subject forest
biomass
RapidEye
k-NN imputation
random forest
 
Description The paper presents the results of estimation of growing stock volume and live biomass in forest stands using combination of forest inventory measurements, multispectral satellite images RapidEye and digital elevation model (DEM). In a context of classification of remote sensing data we considered two nonparametric methods – k-Nearest Neighbors (k-NN) and Random Forest (RF). We concluded that RF outperforms kNN method nevertheless both of them provide quite accurate estimation of mean value of growing volume in a range of ±5 m3·ha-1, different components of aboveground biomass - ±1–2 t·ha-1.
 
Date 2018-05-15T14:01:06Z
2018-05-15T14:01:06Z
2016
 
Type Conference Abstract
 
Identifier Myroniuk V. Combining RapidEye satellite images and forest inventory data for assesment of forest biomass / Viktor Myroniuk, Andrii Bilous // Litteris et Artibus : proceedings of the 6th International youth science forum, November 24–26, 2016, Lviv, Ukraine / Lviv Polytechnic National University. – Lviv : Lviv Polytechnic Publishing House, 2016. – P. 488–489. – Bibliography: 7 titles.
http://ena.lp.edu.ua:8080/handle/ntb/41164
 
Language en
 
Relation [1] Bilous А. М. Biological productivity and ecosystem functions of softwood deciduous forests in the Ukrainian Polissya : The Manuscript : 06.03.02 , 06.03.03 / Bilous Andrii – Kyiv, 2016. – 423 p. [2] Breiman L. Random Forest / L. Breiman // Machine Learning. – 2001. – Vol. 45. – № 1. – P. 5–32. [3] Crookston N. L. yaImpute: An R Package for ¬kNN Imputation / N. L. Crookston, A. O. Finley // Journal of Statistical Software. – 2008. – Vol. 23. – Issue 10. – 1–16. [4] Imputing forest structure attributes from stand inventory and remote sensed data in Western Oregon, USA / A. T. Hudak, A. T. Haren, N. L. Crookston et al. // Forest Science. – 2014. – Vol. 60. – Issue. 2.– P. 253–269. [5] McRoberts R. E. Estimation forest attribute parameters for small areas using nearest neighbors techniques / R. E. McRoberts // Forest Ecology and Management. – 2012. – Vol. 272. – P. 3–12. [6] Tables and models of growth and productivity of forest of forming species of Northern Eurasia (standard and reference materials) – М.: 2006. – 803 p. [7] Tomppo E. Satellite image-based National Forest Inventory of Finland / E. Tompo // International Archives of Photogrammetry and Remote Sensing. – 1991. – Vol. 28: 1–7. – P. 419–424.
 
Format 488-489
application/pdf
 
Coverage UA
Lviv
 
Publisher Lviv Polytechnic Publishing House