Carbon monoxide oxidation on the Pt-catalyst: modelling and stability
Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Carbon monoxide oxidation on the Pt-catalyst: modelling and stability
Оксидація чадного газу на поверхні Pt-каталізатора: моделювання і стійкість |
|
Creator |
Рижа, І.
Мацелюх, М. Ryzha, I. Matseliukh, M. |
|
Contributor |
Національний унівеpситет «Львівська політехніка»
Lviv Polytechnic National University |
|
Subject |
каталітична реакція окислення
реакційно-дифузійна модель біфуркація Хопфа біфуркація Тюрінга reaction of catalytic oxidation reaction-diffusion model Hopf bifurcation Turing bifurcation 538.9 |
|
Description |
Дослiджено двовимiрну математичну модель оксидацiї чадного газу (СО) для механi- зму Лангмюра–Гiншелвуда на поверхнi платинового каталiзатора (Pt) з урахуванням перебудови поверхнi каталiзатора пiд впливом процесiв адсорбцiї-десорбцiї. Проана- лiзовано стiйкiсть розв’язкiв моделi. Виявлено просторово-часовi перiодичнi хiмiчнi коливання покриттiв СО, кисню (О) та частки поверхнi неперебудованої структури (1 × 1). Дослiджено умови виникнення бiфуркацiй Хопфа та Тюрiнга. A two-dimensional mathematical model of carbon monoxide (CO) oxidation is investigated for the Langmuir-Hinshelwood mechanism on the surface of a Platinum (Pt) catalyst. The adsorbate-driven structural phase transition of catalytic surface is taken into account. The stability analysis of the model solutions is carried out. It is shown that the spatio-temporal periodic chemical oscillations of CO and oxygen (O) surface coverages and a fraction of the surface in the non-reconstructed (1 × 1)-structure occur. Conditions for Hopf and Turing bifurcation to arise are investigated. |
|
Date |
2018-06-05T14:12:25Z
2018-06-05T14:12:25Z 2017-06-15 2017-06-15 |
|
Type |
Article
|
|
Identifier |
Ryzha I. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability / I. Ryzha, M. Matseliukh // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 96–106.
2312-9794 http://ena.lp.edu.ua:8080/handle/ntb/41465 Ryzha I. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability / I. Ryzha, M. Matseliukh // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 96–106. |
|
Language |
en
|
|
Relation |
Mathematical Modeling and Computing, 1 (4), 2017
[1] SadeghiP., DunphyK., PuncktC., RotermundH.H. Inversion of pattern anisotropy during CO oxidation on Pt(110) correlated with appearance of subsurface oxygen. J. Phys. Chem. C. 116 (7), 4686–4691 (2012). [2] ZaikinA.N., ZhabotinskyA.M. Concentration wave propagation in two-dimensional liquid-phase selfoscillating system. Nature. 225, 535–537 (1970). [3] RotermundH.H., EngelW., KordeschM., ErtlG. Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum. Nature. 343, 355–357 (1990). [4] Jakubith S., RotermundH.H., EngelW., von OertzenA., ErtlG. Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013–3016 (1990). [5] NettesheimS., von OertzenA., RotermundH.H., ErtlG. Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): Front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985 (1993). [6] KimM., BertramM., PollmannM., von OertzenA., MikhailovA. S., RotermundH.H., ErtlG. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science. 292, 1357–1360 (2001). [7] Wolff J., PapathanasiouA.G., Kevrekidis I.G., RotermundH.H., ErtlG. Spatiotemporal addressing of surface activity. Science. 294, 134–137 (2001). [8] Slin’koM.M., JaegerN. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis). Eds. Amsterdam: Elsevier; Vol. 86 (1994). [9] BaxterR. J., HuP. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002). [10] WilfM., DawsonP.T. The adsorption and desorption of oxygen on the Pt(110) surface; a thermal desorption and LEED/AES study. Surf. Sci. 65, 399–418 (1977). [11] GomerR. Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys. 53 (7), 917–1002 (1990). [12] KelloggG. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168–2171 (1985). [13] GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1 × 2) − (1 × 1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989). [14] KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96, 9161–9172 (1992). [15] B¨arM., EiswirthM., RotermundH.H., ErtlG. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992). [16] GasserR.P.H., SmithE.B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1 (10), 457–458 (1967). [17] BertramM., MikhailovA. S. Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback. Phys. Rev. E. 67, 036207:1–11 (2003). [18] Bzovska I. S., Mryglod I.M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010). [19] ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers (1990). [20] SuchorskiY. Private comunication. [21] KornG.A., KornT.M. Mathematical handbook for scientists and engineers. Courier Corporation (2000). [22] KuznetsovY. Elements of applied bifurcation theory. New York, Springer (1995). [23] Bzovska I. S., Mryglod I.M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. Phys. J. 61 (2), 134–142 (2016). [24] HoyleR. Pattern Formation. New York, Cambridge University Press (2006). [1] SadeghiP., DunphyK., PuncktC., RotermundH.H. Inversion of pattern anisotropy during CO oxidation on Pt(110) correlated with appearance of subsurface oxygen. J. Phys. Chem. P. 116 (7), 4686–4691 (2012). [2] ZaikinA.N., ZhabotinskyA.M. Concentration wave propagation in two-dimensional liquid-phase selfoscillating system. Nature. 225, 535–537 (1970). [3] RotermundH.H., EngelW., KordeschM., ErtlG. Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum. Nature. 343, 355–357 (1990). [4] Jakubith S., RotermundH.H., EngelW., von OertzenA., ErtlG. Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013–3016 (1990). [5] NettesheimS., von OertzenA., RotermundH.H., ErtlG. Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): Front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985 (1993). [6] KimM., BertramM., PollmannM., von OertzenA., MikhailovA. S., RotermundH.H., ErtlG. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science. 292, 1357–1360 (2001). [7] Wolff J., PapathanasiouA.G., Kevrekidis I.G., RotermundH.H., ErtlG. Spatiotemporal addressing of surface activity. Science. 294, 134–137 (2001). [8] Slin’koM.M., JaegerN. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis). Eds. Amsterdam: Elsevier; Vol. 86 (1994). [9] BaxterR. J., HuP. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002). [10] WilfM., DawsonP.T. The adsorption and desorption of oxygen on the Pt(110) surface; a thermal desorption and LEED/AES study. Surf. Sci. 65, 399–418 (1977). [11] GomerR. Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys. 53 (7), 917–1002 (1990). [12] KelloggG. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168–2171 (1985). [13] GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1 × 2) − (1 × 1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989). [14] KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96, 9161–9172 (1992). [15] B¨arM., EiswirthM., RotermundH.H., ErtlG. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992). [16] GasserR.P.H., SmithE.B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1 (10), 457–458 (1967). [17] BertramM., MikhailovA. S. Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback. Phys. Rev. E. 67, 036207:1–11 (2003). [18] Bzovska I. S., Mryglod I.M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010). [19] ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers (1990). [20] SuchorskiY. Private comunication. [21] KornG.A., KornT.M. Mathematical handbook for scientists and engineers. Courier Corporation (2000). [22] KuznetsovY. Elements of applied bifurcation theory. New York, Springer (1995). [23] Bzovska I. S., Mryglod I.M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. Phys. J. 61 (2), 134–142 (2016). [24] HoyleR. Pattern Formation. New York, Cambridge University Press (2006). |
|
Rights |
© 2017 Lviv Polytechnic National University CMM IAPMM NASU
|
|
Format |
96-106
11 application/pdf image/png |
|
Coverage |
Lviv
|
|
Publisher |
Lviv Politechnic Publishing House
|
|