Запис Детальніше

Numerical analysis of the advection-diffusion problems in thin curvilinear channel based on multiscale finite element method

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Numerical analysis of the advection-diffusion problems in thin curvilinear channel based on multiscale finite element method
Числовий аналіз задач адвекції-дифузії у тонкому криволінійному каналі на основі різномасштабного методу скінченних елементів
 
Creator Мазуряк, Н.
Савула, Я.
Mazuriak, N.
Savula, Ya.
 
Contributor Львівський національний університет імені Івана Франка
Ivan Franko National University of Lviv
 
Subject різномасштабний метод скінченних елементів
адвекція-дифузія
тонкий криволінійний канал
multiscale finite element method
advection-diffusion
thin curvilinear channel
517.958
519.6
 
Description Розглянуто задачу адвекцiї-дифузiї у тонкому криволiнiйному каналi. До розв’язу-
вання цiєї задачi застовано рiзномасштабний метод скiнченних елементiв. Показано,
що цей метод є ефективним для достатньо великих чисел Пекле. Наведено та про-
аналiзовано результати обчислювальних експериментiв.
The advection-diffusion problem in a thin curvilinear channel is considered. The multiscale
finite element method is applied to solving the formulated model problem. It is shown
that this method is efficient in the case of sufficiently large Peclet numbers. Numerical
examples are presented and analysed.
 
Date 2018-06-05T14:12:29Z
2018-06-05T14:12:29Z
2017-06-15
2017-06-15
 
Type Article
 
Identifier Mazuriak N. Numerical analysis of the advection-diffusion problems in thin curvilinear channel based on multiscale finite element method / N. Mazuriak, Ya. Savula // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 59–68.
2312-9794
http://ena.lp.edu.ua:8080/handle/ntb/41473
Mazuriak N. Numerical analysis of the advection-diffusion problems in thin curvilinear channel based on multiscale finite element method / N. Mazuriak, Ya. Savula // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 59–68.
 
Language en
 
Relation Mathematical Modeling and Computing, 1 (4), 2017
[1] SavulaYa. Numerical analysis of problems of mathematical physics by variational methods. Lviv, 221 p. (2004).
[2] EfendievY., HouT. Multiscale finite element methods. Theory and application. NY, Springer (Surveys and Tutorials in the Applied Mathematical Sciences). Vol.4, 234 p. (2009).
[3] SpodarN., SavulaYa. Application of multiscale finite element method for solving the one-dimensional advection-diffusion problem. Physico-mathematical modelling and informational technologies. 19, 190–197 (2014).
[4] SpodarN., SavulaYa. Computational aspects of multiscale finite element method. Physico-mathematical modelling and informational technologies. 23, 169–177 (2016).
[5] RashevskijP. Course of differential geometry. Moscow, Leningrad (State publishing house of technical and theoretical literature), 3th edition, recycled, 428 p. (1950).
[6] SavulaYa.H., KoukharskyiV.M., ChapliaYe.Ya. Numerical analysis of advection-diffusion in the continuum with thin canal. Numerical Heat Transfer, PartA: Applications: An International Journal of Computation and Methodology. 33 (3), 341–351 (1998).
[7] KukharskyyV., KukharskaN., SavulaYa. Application of Heterogeneous Mathematical Models for the Solving of Heat and Mass Transfer Problems in Environments with Thin Heterogeneties. Physico-mathematical modelling and informational technologies. 4, 132–141 (2006).
[1] SavulaYa. Numerical analysis of problems of mathematical physics by variational methods. Lviv, 221 p. (2004).
[2] EfendievY., HouT. Multiscale finite element methods. Theory and application. NY, Springer (Surveys and Tutorials in the Applied Mathematical Sciences). Vol.4, 234 p. (2009).
[3] SpodarN., SavulaYa. Application of multiscale finite element method for solving the one-dimensional advection-diffusion problem. Physico-mathematical modelling and informational technologies. 19, 190–197 (2014).
[4] SpodarN., SavulaYa. Computational aspects of multiscale finite element method. Physico-mathematical modelling and informational technologies. 23, 169–177 (2016).
[5] RashevskijP. Course of differential geometry. Moscow, Leningrad (State publishing house of technical and theoretical literature), 3th edition, recycled, 428 p. (1950).
[6] SavulaYa.H., KoukharskyiV.M., ChapliaYe.Ya. Numerical analysis of advection-diffusion in the continuum with thin canal. Numerical Heat Transfer, PartA: Applications: An International Journal of Computation and Methodology. 33 (3), 341–351 (1998).
[7] KukharskyyV., KukharskaN., SavulaYa. Application of Heterogeneous Mathematical Models for the Solving of Heat and Mass Transfer Problems in Environments with Thin Heterogeneties. Physico-mathematical modelling and informational technologies. 4, 132–141 (2006).
 
Rights © 2017 Lviv Polytechnic National University CMM IAPMM NASU
 
Format 59-68
10
application/pdf
image/png
 
Coverage Lviv
 
Publisher Lviv Politechnic Publishing House