Travelling wave simulations to the modified Zakharov-Kuzentsov model arising in plasma physics
Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Travelling wave simulations to the modified Zakharov-Kuzentsov model arising in plasma physics
|
|
Creator |
Haci Mehmet Baskonus
Muzaffer Askin |
|
Contributor |
Munzur University
|
|
Subject |
The modified exp-(-Omega(xi))-expansion function method
the modified Zakharov-Kuzentsov equation complex and hyperbolic function solution |
|
Description |
In this manuscript, we carry out the modified exp-(-Omega(xi))-expansion function method to the modified Zakharov-Kuzentsov equation with (2+ 1) dimensions arising in plasma physics. Then, the hyperbolic and complex travelling wave solutions are obtained to the model. It is observed that all results are verified to the model with the help of Wolfram Mathematica 9. We also plot the two- and threedimensional surfaces for all the travelling wave solutions obtained in this paper using the same computer program. |
|
Date |
2018-04-11T13:11:04Z
2018-04-11T13:11:04Z 2016 |
|
Type |
Conference Abstract
|
|
Identifier |
Haci Mehmet Baskonus Travelling wave simulations to the modified Zakharov-Kuzentsov model arising in plasma physics / Haci Mehmet Baskonus, Muzaffer Askin // Litteris et Artibus : proceedings of the 6th International youth science forum, November 24–26, 2016, Lviv, Ukraine / Lviv Polytechnic National University. – Lviv : Lviv Polytechnic Publishing House, 2016. – P. 83–86. – Bibliography: 10 titles.
http://ena.lp.edu.ua:8080/handle/ntb/40258 |
|
Language |
en
|
|
Relation |
[1] H.M. Baskonus, “New Acoustic Wave Behaviors to the Davey-StewartsonEquation with Power Nonlinearity Arising in Fluid Dynamics”, Nonlinear Dynamics, 86(1), 177-183, 2016. [2] M. Najafi, S. Arbabi and M. Najafi, “He's Semi-Inverse Method for Camassa-Holm Equation and Simplified Modified Camassa-Holm Equation”, International Journal of Physical Research. 1(1), 1-6, 2013. [3] H.M. Baskonus and H. Bulut, “Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics”, Waves in Random and Complex Media, 26(2), 201-208, 2016. [4] H. Bulut, “Classification of Exact Solutions for Generalized Form of Equation,” Abstract and Applied Analysis, 2013,1–11, 2013. [5] A. H. Khater, M, M. Hassan, D. K. Callebaut, Travelling Wave Solutions To Some Important Equations of Mathematical Physics, Reports On Mathematical Physics ,66, 1-19, 2010. [6] A. H. Khater and M. M. Hassan, “Exact Jacobi elliptic function solutions for some special types of nonlinear evolution equations”, II Nuovo cimento della Società italiana di fisica B, 121 (6), 613-622, 2016. [7] H.O. Roshid and Md. A. Rahman, “The exp(−Φ(η))-expansion method with application in the (1+1)-dimensional classical Boussinesq equations”, Results in Physics, 4, 150–155, 2014. [8] A. E. Abdelrahman, Emad H. M. Zahran, Mostafa M. A. Khater, “The exp(−ϕ(ξ))-Expansion Method and Its Application for Solving Nonlinear Evolution Equations Mahmoud”, International Journal of Modern Nonlinear Theory and Application, 4, 37-47, 2015. [9] M.G. Hafez, Md. Nur Alam and M. Ali Akbar, “Application of the exp (-Omega(\eta))-expansion Method to Find Exact Solutions for the Solitary Wave Equation in an Unmagnatized Dusty Plasma”, World Applied Sciences Journal 32 (10): 2150-2155, 2014. [10]E.W. Weisstein, “Concise Encyclopedia of Mathematics”, 2nd edition. NewYork: CRC Press, 2002.
|
|
Format |
83-86
application/pdf |
|
Coverage |
UA
Lviv |
|
Publisher |
Lviv Polytechnic Publishing House
|
|