Запис Детальніше

Производная функции множества по мере и её применение (теоретические основы инвестиционных задач)

eaDNURT - the electronic archive of the Dnepropetrovsk National University of Railway Transport

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Производная функции множества по мере и её применение (теоретические основы инвестиционных задач)
Похідна функції множини за мірою та її застосування (теоретичні основи інвестиційних задач)
Derivative of Set Measure Functions and its Application (Theoretical Bases of Investment Objectives)
 
Creator Босов, Аркадий Аркадьевич
Лоза, Петр Алексеевич
Босов, Аркадій Аркадійович
Лоза, Петро Олексійович
Bosov, Arkadiy A.
Loza, Petro O.
 
Subject алгебра множеств
функции множества по мере
производные функции множества по мере
пределы последовательности множеств
алгебра множин
функції множини за мірою
похідні функції множини за мірою
межі послідовності множин
КПМ
КЕСЗ
algebra of sets
set function over a measure
derivative set function over a measure
sets sequence limit
 
Description Босов, А. А.
Производная функции множества по мере и ее применение (теоретические основы инвестиционных задач) / А. А. Босов, П. А. Лоза // Наука та прогрес транспорту. — 2014. — № 3 (51). — С. 92 —99. — Библиогр. в конце ст. — doi:10.15802/stp2014/25870.
RU: Цель. В работе необходимо разработать теоретические основы для решения инвестиционных задач, представленных в виде функций множества как задач векторной оптимизации или задач на условный экстремум. Методика. В качестве исследования инвестиционных задач используются функции множества и их производные по мере. Доказывается необходимое условие минимума функции множества. В задачах на условный экстремум используется метод Лагранжа. Показано, что этот метод применим и для функций множества. Для доказательства используется мера, обобщающая меру А. Лебега, и вводится понятие предела последовательности множеств. Отмечается, что введенный предел по мере совпадает с классическим пределом по Э. Борелю и может быть использован при доказательстве существования производной от функции множества по мере на сходящейся последовательности множеств. Результаты. Предложен алгоритм решения инвестиционной задачи на условный экстремум применительно к задачам инвестирования. Научная новизна. Научная новизна состоит в том, что в многовариантных задачах на условный экстремум от непосредственного перебора можно отказаться, а использовать предлагаемый алгоритм построения (отбора) вариантов, которые позволяют строить выпуклую линейную огибающую решения по Парето. Данная огибающая позволяет лицу, принимающему решения (ЛПР), выбрать такие варианты, которые «лучше» с его позиции, и учитывать некоторые критерии, формализация которых затруднена или они не могут быть описаны в математических терминах. Практическая значимость. Результаты исследования дают необходимое теоретическое обоснование принятия решений в инвестиционных задачах, когда объектов инвестирования значительное число и непосредственный перебор вариантов весьма затруднителен по затратам времени даже для современной вычислительной техники.
UK: Мета. У роботі необхідно розробити теоретичні основи для вирішення інвестиційних завдань,
представлених у вигляді функцій множини як задач векторної оптимізації або завдань на умовний
екстремум. Методика. В якості дослідження інвестиційних задач використовуються функції множини та їх похідні за мірою. Доводиться необхідна умова мінімуму функції множини. У завданнях на умовний екстремум використовується метод Лагранжа. Показано, що цей метод можна застосовувати й для функцій множини. Для доказу використовується міра, узагальнююча міру А. Лебега, і вводиться поняття межі послідовності безлічі множин. Відзначається, що введена межа за мірою збігається з класичною межею за Е. Борелем
та може бути використана при доведенні існування похідної від функції множини за мірою, що сходиться на послідовності множин. Результати. Запропоновано алгоритм розв’язання інвестиційної задачі на умовний екстремум стосовно завдань інвестування. Наукова новизна. Наукова новизна полягає в тому, що в багатоваріантних задачах на умовний екстремум від безпосереднього перебору можна відмовитись, а використовувати запропонований алгоритм побудови (відбору) варіантів, який дозволяє будувати опуклу лінійну огинаючу рішення за Парето. Дана огинаюча дозволяє особі, яка приймає рішення (ОПР), вибрати такі варіанти, які «краще» з його позиції і враховувати деякі критерії, формалізація яких ускладнена або вони не можуть бути описані в математичних термінах. Практична значимість. Результати дослідження дають необхідне
теоретичне обґрунтування прийняття рішень в інвестиційних завданнях, коли об'єктів інвестування значна кількість і безпосередній перебір варіантів вельми скрутний за витратами часу навіть для сучасної обчислювальної техніки.
EN: Purpose. It is necessary to develop the theoretical fundamentals for solving the investment objectives presented
in the form of set function as vector optimization tasks or tasks of constrained extremum. Methodology. Set functions
and their derivatives of measure are used as research of investment objectives. Necessary condition of set function minimum is proved. In the tasks for constrained extremum the method of Lagrange is used. It is shown that this
method can also be used for the set function. It is used the measure for proof, which generalizes the Lebesgue measure, and the concept of set sequence limit is introduced. It is noted that the introduced limit over a measure coincides
with the classical Borel limit and can be used in order to prove the existence of derivative from set function over a measure on convergent of sets sequence. Findings. An algorithm of solving the investment objective for constrained
extremum in relation to investment objectives was offered. Originality. Scientific novelty lies in the fact that in multivariate objects for constrained extremum one can refuse from immediate enumeration. One can use the proposed algorithm of constructing (selection) of options that allow building a convex linear envelope of Pareto solutions. This envelope will let the person who makes a decision (DM), select those options that are "better" from a position of DM, and consider some of the criteria, the formalization of which are difficult or can not be described in mathematical terms. Practical value. Results of the study provide the necessary theoretical substantiation of decision-making in investment objectives, when there is a significant number of an investment objects and immediate enumeration of options is very difficult on time costs even for modern computing techniques.
 
Date 2014-12-16T09:56:50Z
2014-12-16T09:56:50Z
2014
 
Type Article
 
Identifier doi:10.15802/stp2014/25870
2307–3489 (Print)
2307–6666 (Online)
http://eadnurt.diit.edu.ua/jspui/handle/123456789/3097
 
Language ru_RU
 
Publisher ДНУЗТ