Asymptotic Laws for the Spatial Distribution and the Number of Connected Components of Zero Sets of Gaussian Random Functions
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Asymptotic Laws for the Spatial Distribution and the Number of Connected Components of Zero Sets of Gaussian Random Functions
|
|
Creator |
Nazarov, F.
Sodin, M. |
|
Description |
We study the asymptotic laws for the spatial distribution and the number of connected components of zero sets of smooth Gaussian random functions of several real variables. The primary examples are various Gaussian ensembles of real-valued polynomials (algebraic or trigonometric) of large degree on the sphere or torus, and translation-invariant smooth Gaussian functions on the Euclidean space restricted to large domains.
|
|
Date |
2018-07-10T14:23:31Z
2018-07-10T14:23:31Z 2016 |
|
Type |
Article
|
|
Identifier |
Asymptotic Laws for the Spatial Distribution and the Number of Connected Components of Zero Sets of Gaussian Random Functions / F. Nazarov, M. Sodin // Журнал математической физики, анализа, геометрии. — 2016. — Т. 12, № 3. — С. 205-278. — Бібліогр.: 30 назв. — англ.
1812-9471 DOI: doi.org/10.15407/mag12.03.205 Mathematics Subject Classification 2010: 60G15 http://dspace.nbuv.gov.ua/handle/123456789/140554 |
|
Language |
en
|
|
Relation |
Журнал математической физики, анализа, геометрии
|
|
Publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
|
|