Запис Детальніше

Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples
 
Creator Tieplova, D.
 
Description We consider the n² × n² real symmetric and hermitian matrices Mₙ, which are equal to the sum mn of tensor products of the vectors Xμ = B(Yμ ⊗ Yμ), μ = 1, . . . ,mn, where Yμ are i.i.d. random vectors from Rⁿ(Cⁿ) with zero mean and unit variance of components, and B is an n² × n² positive definite non-random matrix. We prove that if mₙ / n² → c ∊ [0,+∞) and the Normalized Counting Measure of eigenvalues of BJB, where J is defined below in (2.6), converges weakly, then the Normalized Counting Measure of eigenvalues of Mn converges weakly in probability to a non-random limit, and its Stieltjes transform can be found from a certain functional equation.
 
Date 2018-07-10T17:04:04Z
2018-07-10T17:04:04Z
2017
 
Type Article
 
Identifier Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples / D. Tieplova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 82-98. — Бібліогр.: 11 назв. — англ.
1812-9471
DOI: doi.org/10.15407/mag13.01.082
Mathematics Subject Classification 2000: 15B52
http://dspace.nbuv.gov.ua/handle/123456789/140566
 
Language en
 
Relation Журнал математической физики, анализа, геометрии
 
Publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України