Запис Детальніше

Реакційноздатні пероксидні макроініціатори для структурування біосумісних полімерів

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Реакційноздатні пероксидні макроініціатори для структурування біосумісних полімерів
Reactive peroxide macroinitiator for cross-linking biocompatible polymers
 
Creator Сердюк, В. О.
Шевчук, О. М.
Перевізник, О. Б.
Букартик, Н. М.
Токарев, В. С.
Serdiuk, V. O.
Shevchuk, O. M.
Pereviznyk, O. B.
Bukartyk, N. M.
Tokarev, V. S.
 
Contributor Національний університет “Львівська політехніка”,кафедра органічної хімії
Львівський національний університет імені Івана Франка, кафедра фізичної та колоїдної хімії
 
Subject радикальна кополімеризація
пероксидні макроініціатори
кінетика
біосумісні полімери
структурування
radical copolymerization
peroxide macroinitiators
kinetics
biocompatible polymers
cross-linking
541.64
541.68
678.0
 
Description Радикальною кополімеризацією в органічному розчиннику синтезовано багато
реакційноздатних пероксидних макроініціаторів на основі акриламіду, бутилмета-
крилату, малеїнового ангідриду і пероксидного мономеру 5-трет-бутилперокси-5-метил-
1-гексен-3-іну, здатних ініціювати процеси структурування біосумісних полімерів.
Визначено якісний і кількісний склад, колоїдно-хімічні та фізико-хімічні властивості
синтезованих реакційноздатних кополімерів-макроініціаторів. Досліджено кінетику та
визначено кінетичні параметри термічного розпаду їх пероксидних груп. Встановлено,
що реакційноздатні кополімери мають поверхнево-активні властивості, знижуючи
поверхневий натяг на межі розділу фаз повітря-водний розчин. Проілюстрована
здатність пероксидних макроініціаторів структурувати біосумісні полімери на прикладі
поліакриламіду і полівінілового спирту.
The series of reactive peroxide macroinitiators based on acryl amide, butyl
methacrylate, maleic anhydride and peroxidic monomer 5-ter-butylperoxy-5-methyl-1-hexene-
3-yne, which are capable of initiating the crosslinking processes of, were synthesized via
radical copolymerization in organic solvent. Qualitative and quantitative composition,
colloidal-chemical and physico-chemical properties of synthesized reactive copolymersmacroinitiators
were revealed. The kinetics were studied and kinetic parameters were
determined for thermal decomposition of their peroxide groups. It was defined that reactive
copolymers possess surface-active properties and reduce surface tension at the aqueous
solution-air interface. The capability of peroxide macroinitiators to crosslink biocompatible
polymers were illustrated on poly(acryl amide) and poly(vinyl alcohol) as examples.
 
Date 2019-01-21T14:36:32Z
2019-01-21T14:36:32Z
2018-02-26
2018-02-26
 
Type Article
 
Identifier Реакційноздатні пероксидні макроініціатори для структурування біосумісних полімерів / В. О. Сердюк, О. М. Шевчук, О. Б. Перевізник, Н. М. Букартик, В. С. Токарев // Вісник національного університету “Львівська політехніка”. Серія: Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2018. — № 886. — С. 226–235. — (Високомолекулярні сполуки та композиційні матеріали).
http://ena.lp.edu.ua:8080/handle/ntb/43635
Reactive peroxide macroinitiator for cross-linking biocompatible polymers / V. O. Serdiuk, O. M. Shevchuk, O. B. Pereviznyk, N. M. Bukartyk, V. S. Tokarev // Visnyk natsionalnoho universytetu "Lvivska politekhnika". Serie: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia. — Vydavnytstvo Lvivskoi politekhniky, 2018. — No 886. — P. 226–235. — (Vysokomolekuliarni spoluky ta kompozytsiini materialy).
 
Language uk
 
Relation Вісник національного університету “Львівська політехніка”. Серія: Хімія, технологія речовин та їх застосування, 886, 2018
1. Bari S. S., Chatterjee A., Mishra S. Biodegradable polymer nanocomposites: An overview // Pol. Rev. – 2016. – Vol. 56 (2). – P. 287–328.
2. Ohan M. P. et al. Synergistic effects of glucose and ultraviolet irradiation on the physical properties of collagen // J. Biomed. Mater. Res. – 2002. – Vol. 60. – P. 384–391.
3. Shim J. W., Nho Y. C. Preparation of poly(acrylic acid)-chitosan hydrogels by gamma irradiation and in vitro drug release // J. App. Pol. Sci. – 2003. – Vol. 90. – P. 3660–3667.
4. Luo S., Cao J., McDonald A. G. Interfacial improvements in a green biopolymer alloy of poly(3-hydroxybutyrateco- 3-hydroxyvalerate) and lignin via in situ reactive extrusion // ACS Sustainable Chem. Eng.– 2016. – Vol. 4(6). – P. 3465–3476.
5. Takamura M., Nakamura T., Kawaguchi S., Takahashi T., Koyama K. Molecular characterization and crystallization behavior of peroxide-induced slightly crosslinked poly(L-lactide) during extrusion // Polymer Journal. – 2010. – Vol. 42. – P. 600–608.
6. Semba T., Kitagawa K., Ishiaku U. S., Hamada H. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends // J. Appl. Pol. Sci. – 2006. – Vol. 101(3). – P. 1816–1825.
7. Islam M. R., Isa N., Yahaya A. N. Effect of curing on hydrolytic degradation of montmorillonite nanoclays filled biobased polyesters // Polym. Renew. Resourc. – 2017. – Vol. 8(2). – Р. 43–60.
8. Виленская М. И., Карамов Д. С., Сорокин Е. И. и др. Получение диметилвинилэтинил-метил-трет- бутилперекиси // Хим. промышленность. – 1970. – №7. – С.399–400.
9. Курганский В. С., Пучин В. А., Воронов С. А., Токарев В. С. Синтез гетерофункциональных полимеров с пероксидными и ангид- ридными группами // Высокомол. соед. – 1983. – Т (А) 25, №5. – С. 997–1004. 9. Климова В. А. Основные микрометоды анализа органических соединений / В. А. Климова. – М.: Химия, 1967. – 208 с.
10. Васильев В. П., Глусь Л. С., Губарь С. П. Разработка газохроматографического метода анализа пероксидного мономера ВЭП // Вестн. Львов. политехн. ин-та “Химия, технология веществ и их применение”. – 1985. – № 191. – С. 24–26.
11. Торопцева А. М. Лабораторный практикум по химии и технологии высокомолекулярных соединений / А. М. Торопцева, К. В. Белогородская, В. М. Бондаренко. – Л.: Химия, 1972. – 416 с.
12. Вережников В. Н., Гермашева И. И., Крысин М. Ю. Коллоидная химия поверхностно-активных веществ: учеб. пособ. – СПб.: Изд-во Лань, 2015. – 299 с.
13. Brandolini A. J. NMR Spectra of Polymers and Polymer Additives / A. J. Brandolini, D. D. Hills. – New York: Marcel Dekker Inc, 2000. – 660 p.
14. Васильев В. П., Пучин В. А., Токарев В. С., Воронов С. А. Исследование кинетики термического распада олигомерного пероксида // Изв. вузов. “Химия и хим. технол.”. – 1983. – Т. 26, № 10. – С. 1246–1248.
1. Bari S. S., Chatterjee A., Mishra S. Biodegradable polymer nanocomposites: An overview, Pol. Rev, 2016, Vol. 56 (2), P. 287–328.
2. Ohan M. P. et al. Synergistic effects of glucose and ultraviolet irradiation on the physical properties of collagen, J. Biomed. Mater. Res, 2002, Vol. 60, P. 384–391.
3. Shim J. W., Nho Y. C. Preparation of poly(acrylic acid)-chitosan hydrogels by gamma irradiation and in vitro drug release, J. App. Pol. Sci, 2003, Vol. 90, P. 3660–3667.
4. Luo S., Cao J., McDonald A. G. Interfacial improvements in a green biopolymer alloy of poly(3-hydroxybutyrateco- 3-hydroxyvalerate) and lignin via in situ reactive extrusion, ACS Sustainable Chem. Eng, 2016, Vol. 4(6), P. 3465–3476.
5. Takamura M., Nakamura T., Kawaguchi S., Takahashi T., Koyama K. Molecular characterization and crystallization behavior of peroxide-induced slightly crosslinked poly(L-lactide) during extrusion, Polymer Journal, 2010, Vol. 42, P. 600–608.
6. Semba T., Kitagawa K., Ishiaku U. S., Hamada H. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends, J. Appl. Pol. Sci, 2006, Vol. 101(3), P. 1816–1825.
7. Islam M. R., Isa N., Yahaya A. N. Effect of curing on hydrolytic degradation of montmorillonite nanoclays filled biobased polyesters, Polym. Renew. Resourc, 2017, Vol. 8(2), R. 43–60.
8. Vilenskaia M. I., Karamov D. S., Sorokin E. I. and other Poluchenie dimetilviniletinil-metil-tret- butilperekisi, Khim. promyshlennost, 1970, No 7, P.399–400.
9. Kurhanskii V. S., Puchin V. A., Voronov S. A., Tokarev V. S. Sintez heterofunktsionalnykh polimerov s peroksidnymi i anhid- ridnymi hruppami, Vysokomol. soed, 1983, T (A) 25, No 5, P. 997–1004. 9. Klimova V. A. Osnovnye mikrometody analiza orhanicheskikh soedinenii, V. A. Klimova, M., Khimiia, 1967, 208 p.
10. Vasilev V. P., Hlus L. S., Hubar S. P. Razrabotka hazokhromatohraficheskoho metoda analiza peroksidnoho monomera VEP, Vestn. Lvov. politekhn. in-ta "Khimiia, tekhnolohiia veshchestv i ikh primenenie", 1985, No 191, P. 24–26.
11. Toroptseva A. M. Laboratornyi praktikum po khimii i tekhnolohii vysokomolekuliarnykh soedinenii, A. M. Toroptseva, K. V. Belohorodskaia, V. M. Bondarenko, L., Khimiia, 1972, 416 p.
12. Verezhnikov V. N., Hermasheva I. I., Krysin M. Iu. Kolloidnaia khimiia poverkhnostno-aktivnykh veshchestv: tutorial – SPb., Izd-vo Lan, 2015, 299 p.
13. Brandolini A. J. NMR Spectra of Polymers and Polymer Additives, A. J. Brandolini, D. D. Hills, New York: Marcel Dekker Inc, 2000, 660 p.
14. Vasilev V. P., Puchin V. A., Tokarev V. S., Voronov S. A. Issledovanie kinetiki termicheskoho raspada olihomernoho peroksida, Izv. vuzov. "Khimiia i khim. tekhnol.", 1983, V. 26, No 10, P. 1246–1248.
 
Rights © Національний університет “Львівська політехніка”, 2018
© Сердюк В. О., Шевчук О. М., Перевізник О. Б., Букартик Н. М., Токарев В. С., 2018
 
Format 226-235
10
application/pdf
image/png
 
Coverage Львів
 
Publisher Видавництво Львівської політехніки