Fermion on curved spaces, symmetries, and quantum anomalies
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Fermion on curved spaces, symmetries, and quantum anomalies
|
|
Creator |
Visinescu, M.
|
|
Description |
We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz vector of the Kepler-type problem. Using the Atiyah-Patodi-Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly.
|
|
Date |
2019-02-07T09:07:28Z
2019-02-07T09:07:28Z 2006 |
|
Type |
Article
|
|
Identifier |
Fermion on curved spaces, symmetries, and quantum anomalies / M. Visinescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 83C47; 83C40; 83C20 http://dspace.nbuv.gov.ua/handle/123456789/146084 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|